Conference Paper/Proceeding/Abstract 737 views 143 downloads
Enhancing Cardiac Cell Networks Segmentation via Hybrid Supervised and Zero-Shot Strategies
Lecture Notes in Computer Science, Volume: 16039, Pages: 351 - 365
Swansea University Authors:
SARAH COSTA, Hassan Eshkiki , Fabio Caraffini
, Christopher George
-
PDF | Accepted Manuscript
Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).
Download (4.67MB)
DOI (Published version): 10.1007/978-3-032-00656-1_26
Abstract
Cardiac cell network segmentation is uniquely challenging because cardiomyocytes, unlike other cell types, form morphologically complex multicellular structures, causing generalist models like Cellpose to oversegment and perform inaccurately. We use our unique live cell imaging dataset of self-organ...
| Published in: | Lecture Notes in Computer Science |
|---|---|
| ISBN: | 9783032006554 9783032006561 |
| ISSN: | 0302-9743 1611-3349 |
| Published: |
Cham
Springer Nature Switzerland
2026
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa69568 |
| first_indexed |
2025-05-26T22:02:04Z |
|---|---|
| last_indexed |
2025-09-16T07:25:17Z |
| id |
cronfa69568 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-09-15T17:09:41.3064586</datestamp><bib-version>v2</bib-version><id>69568</id><entry>2025-05-26</entry><title>Enhancing Cardiac Cell Networks Segmentation via Hybrid Supervised and Zero-Shot Strategies</title><swanseaauthors><author><sid>9d751a1fc42c90c5b7a0719cf5939280</sid><firstname>SARAH</firstname><surname>COSTA</surname><name>SARAH COSTA</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c9972b26a83de11ffe211070f26fe16b</sid><ORCID>0000-0001-7795-453X</ORCID><firstname>Hassan</firstname><surname>Eshkiki</surname><name>Hassan Eshkiki</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>d0b8d4e63d512d4d67a02a23dd20dfdb</sid><ORCID>0000-0001-9199-7368</ORCID><firstname>Fabio</firstname><surname>Caraffini</surname><name>Fabio Caraffini</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a2e211f7bd379c81e9c393637803a0a0</sid><ORCID>0000-0001-9852-1135</ORCID><firstname>Christopher</firstname><surname>George</surname><name>Christopher George</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-05-26</date><abstract>Cardiac cell network segmentation is uniquely challenging because cardiomyocytes, unlike other cell types, form morphologically complex multicellular structures, causing generalist models like Cellpose to oversegment and perform inaccurately. We use our unique live cell imaging dataset of self-organised HL-1 networks to propose and assess various algorithmic configurations based on combinations of the Cellpose model and the Segment Anything Model, equipped with multiple pre- and post-processing routines. Our results demonstrate the advantages of integrating equalisation-based pre-processing with median filtering, fine-tuning Cellpose and incorporating our post-processing routine into the segmentation pipeline, achieving up to 85% accuracy, 96% recall, 91% DICE and 88% precision, while mitigating oversegmentation.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Lecture Notes in Computer Science</journal><volume>16039</volume><journalNumber/><paginationStart>351</paginationStart><paginationEnd>365</paginationEnd><publisher>Springer Nature Switzerland</publisher><placeOfPublication>Cham</placeOfPublication><isbnPrint>9783032006554</isbnPrint><isbnElectronic>9783032006561</isbnElectronic><issnPrint>0302-9743</issnPrint><issnElectronic>1611-3349</issnElectronic><keywords>Cell Segmentation; Cellpose; Segment Anything Model; Cardiomyocyte Networks</keywords><publishedDay>1</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2026</publishedYear><publishedDate>2026-01-01</publishedDate><doi>10.1007/978-3-032-00656-1_26</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>Supported by the Morgan Advanced Studies Institute, Wales, UK; the National Cardiovascular Research Network (funded by Health and Care Research Wales); the British Heart Foundation.</funders><projectreference/><lastEdited>2025-09-15T17:09:41.3064586</lastEdited><Created>2025-05-26T22:57:55.6466250</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>SARAH</firstname><surname>COSTA</surname><order>1</order></author><author><firstname>Hassan</firstname><surname>Eshkiki</surname><orcid>0000-0001-7795-453X</orcid><order>2</order></author><author><firstname>Fabio</firstname><surname>Caraffini</surname><orcid>0000-0001-9199-7368</orcid><order>3</order></author><author><firstname>Christopher</firstname><surname>George</surname><orcid>0000-0001-9852-1135</orcid><order>4</order></author></authors><documents><document><filename>69568__34349__863332a2f91c47d8950eba45b7a28d40.pdf</filename><originalFilename>AIiH_2025.pdf</originalFilename><uploaded>2025-05-26T23:07:20.8704043</uploaded><type>Output</type><contentLength>4894922</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-09-15T17:09:41.3064586 v2 69568 2025-05-26 Enhancing Cardiac Cell Networks Segmentation via Hybrid Supervised and Zero-Shot Strategies 9d751a1fc42c90c5b7a0719cf5939280 SARAH COSTA SARAH COSTA true false c9972b26a83de11ffe211070f26fe16b 0000-0001-7795-453X Hassan Eshkiki Hassan Eshkiki true false d0b8d4e63d512d4d67a02a23dd20dfdb 0000-0001-9199-7368 Fabio Caraffini Fabio Caraffini true false a2e211f7bd379c81e9c393637803a0a0 0000-0001-9852-1135 Christopher George Christopher George true false 2025-05-26 Cardiac cell network segmentation is uniquely challenging because cardiomyocytes, unlike other cell types, form morphologically complex multicellular structures, causing generalist models like Cellpose to oversegment and perform inaccurately. We use our unique live cell imaging dataset of self-organised HL-1 networks to propose and assess various algorithmic configurations based on combinations of the Cellpose model and the Segment Anything Model, equipped with multiple pre- and post-processing routines. Our results demonstrate the advantages of integrating equalisation-based pre-processing with median filtering, fine-tuning Cellpose and incorporating our post-processing routine into the segmentation pipeline, achieving up to 85% accuracy, 96% recall, 91% DICE and 88% precision, while mitigating oversegmentation. Conference Paper/Proceeding/Abstract Lecture Notes in Computer Science 16039 351 365 Springer Nature Switzerland Cham 9783032006554 9783032006561 0302-9743 1611-3349 Cell Segmentation; Cellpose; Segment Anything Model; Cardiomyocyte Networks 1 1 2026 2026-01-01 10.1007/978-3-032-00656-1_26 COLLEGE NANME COLLEGE CODE Swansea University Not Required Supported by the Morgan Advanced Studies Institute, Wales, UK; the National Cardiovascular Research Network (funded by Health and Care Research Wales); the British Heart Foundation. 2025-09-15T17:09:41.3064586 2025-05-26T22:57:55.6466250 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science SARAH COSTA 1 Hassan Eshkiki 0000-0001-7795-453X 2 Fabio Caraffini 0000-0001-9199-7368 3 Christopher George 0000-0001-9852-1135 4 69568__34349__863332a2f91c47d8950eba45b7a28d40.pdf AIiH_2025.pdf 2025-05-26T23:07:20.8704043 Output 4894922 application/pdf Accepted Manuscript true Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/4.0/deed.en |
| title |
Enhancing Cardiac Cell Networks Segmentation via Hybrid Supervised and Zero-Shot Strategies |
| spellingShingle |
Enhancing Cardiac Cell Networks Segmentation via Hybrid Supervised and Zero-Shot Strategies SARAH COSTA Hassan Eshkiki Fabio Caraffini Christopher George |
| title_short |
Enhancing Cardiac Cell Networks Segmentation via Hybrid Supervised and Zero-Shot Strategies |
| title_full |
Enhancing Cardiac Cell Networks Segmentation via Hybrid Supervised and Zero-Shot Strategies |
| title_fullStr |
Enhancing Cardiac Cell Networks Segmentation via Hybrid Supervised and Zero-Shot Strategies |
| title_full_unstemmed |
Enhancing Cardiac Cell Networks Segmentation via Hybrid Supervised and Zero-Shot Strategies |
| title_sort |
Enhancing Cardiac Cell Networks Segmentation via Hybrid Supervised and Zero-Shot Strategies |
| author_id_str_mv |
9d751a1fc42c90c5b7a0719cf5939280 c9972b26a83de11ffe211070f26fe16b d0b8d4e63d512d4d67a02a23dd20dfdb a2e211f7bd379c81e9c393637803a0a0 |
| author_id_fullname_str_mv |
9d751a1fc42c90c5b7a0719cf5939280_***_SARAH COSTA c9972b26a83de11ffe211070f26fe16b_***_Hassan Eshkiki d0b8d4e63d512d4d67a02a23dd20dfdb_***_Fabio Caraffini a2e211f7bd379c81e9c393637803a0a0_***_Christopher George |
| author |
SARAH COSTA Hassan Eshkiki Fabio Caraffini Christopher George |
| author2 |
SARAH COSTA Hassan Eshkiki Fabio Caraffini Christopher George |
| format |
Conference Paper/Proceeding/Abstract |
| container_title |
Lecture Notes in Computer Science |
| container_volume |
16039 |
| container_start_page |
351 |
| publishDate |
2026 |
| institution |
Swansea University |
| isbn |
9783032006554 9783032006561 |
| issn |
0302-9743 1611-3349 |
| doi_str_mv |
10.1007/978-3-032-00656-1_26 |
| publisher |
Springer Nature Switzerland |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| document_store_str |
1 |
| active_str |
0 |
| description |
Cardiac cell network segmentation is uniquely challenging because cardiomyocytes, unlike other cell types, form morphologically complex multicellular structures, causing generalist models like Cellpose to oversegment and perform inaccurately. We use our unique live cell imaging dataset of self-organised HL-1 networks to propose and assess various algorithmic configurations based on combinations of the Cellpose model and the Segment Anything Model, equipped with multiple pre- and post-processing routines. Our results demonstrate the advantages of integrating equalisation-based pre-processing with median filtering, fine-tuning Cellpose and incorporating our post-processing routine into the segmentation pipeline, achieving up to 85% accuracy, 96% recall, 91% DICE and 88% precision, while mitigating oversegmentation. |
| published_date |
2026-01-01T05:24:17Z |
| _version_ |
1851641202124783616 |
| score |
11.089988 |

