Conference Paper/Proceeding/Abstract 244 views 75 downloads
Evaluating the Feasibility of Using Smaller Large Language Models for Generating Impressions from Findings in Radiology Reports
Lecture Notes in Computer Science, Volume: 16038, Pages: 339 - 350
Swansea University Authors:
Margarita Deli-Slavova, Julian Hough
-
PDF | Accepted Manuscript
Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).
Download (269.75KB)
DOI (Published version): 10.1007/978-3-032-00652-3_24
Abstract
Evaluating the Feasibility of Using Smaller Large Language Models for Generating Impressions from Findings in Radiology Reports
| Published in: | Lecture Notes in Computer Science |
|---|---|
| ISBN: | 9783032006516 9783032006523 |
| ISSN: | 0302-9743 1611-3349 |
| Published: |
Cham
Springer Nature Switzerland
2026
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa69805 |
| first_indexed |
2025-06-24T10:44:47Z |
|---|---|
| last_indexed |
2025-09-16T07:26:19Z |
| id |
cronfa69805 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-09-15T17:15:14.7486598</datestamp><bib-version>v2</bib-version><id>69805</id><entry>2025-06-24</entry><title>Evaluating the Feasibility of Using Smaller Large Language Models for Generating Impressions from Findings in Radiology Reports</title><swanseaauthors><author><sid>1218f2ae03a2a131ae5bdbf0ccc08b2b</sid><firstname>Margarita</firstname><surname>Deli-Slavova</surname><name>Margarita Deli-Slavova</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>082d773ae261d2bbf49434dd2608ab40</sid><ORCID>0000-0002-4345-6759</ORCID><firstname>Julian</firstname><surname>Hough</surname><name>Julian Hough</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-06-24</date><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>Lecture Notes in Computer Science</journal><volume>16038</volume><journalNumber/><paginationStart>339</paginationStart><paginationEnd>350</paginationEnd><publisher>Springer Nature Switzerland</publisher><placeOfPublication>Cham</placeOfPublication><isbnPrint>9783032006516</isbnPrint><isbnElectronic>9783032006523</isbnElectronic><issnPrint>0302-9743</issnPrint><issnElectronic>1611-3349</issnElectronic><keywords>NLP; Radiology; Summarisation; In-context learning</keywords><publishedDay>1</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2026</publishedYear><publishedDate>2026-01-01</publishedDate><doi>10.1007/978-3-032-00652-3_24</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>This work was partly funded by the UKRI EPSRC CDT for Enhancing Human Interactions and Collaborations with Data and Intelligence Driven Systems, EP/S021892/1. Hough’s work is partly funded by the EPSRC FLUIDITY project, EP/X009343/1.</funders><projectreference/><lastEdited>2025-09-15T17:15:14.7486598</lastEdited><Created>2025-06-24T11:40:57.0325553</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Margarita</firstname><surname>Deli-Slavova</surname><order>1</order></author><author><firstname>Julian</firstname><surname>Hough</surname><orcid>0000-0002-4345-6759</orcid><order>2</order></author></authors><documents><document><filename>69805__34556__9ddd55cedbb04ce9b85009e5ee974642.pdf</filename><originalFilename>DelislavovaHough2025.pdf</originalFilename><uploaded>2025-06-24T11:43:17.0474403</uploaded><type>Output</type><contentLength>276228</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2025-07-24T00:00:00.0000000</embargoDate><documentNotes>Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/deed.en</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-09-15T17:15:14.7486598 v2 69805 2025-06-24 Evaluating the Feasibility of Using Smaller Large Language Models for Generating Impressions from Findings in Radiology Reports 1218f2ae03a2a131ae5bdbf0ccc08b2b Margarita Deli-Slavova Margarita Deli-Slavova true false 082d773ae261d2bbf49434dd2608ab40 0000-0002-4345-6759 Julian Hough Julian Hough true false 2025-06-24 Conference Paper/Proceeding/Abstract Lecture Notes in Computer Science 16038 339 350 Springer Nature Switzerland Cham 9783032006516 9783032006523 0302-9743 1611-3349 NLP; Radiology; Summarisation; In-context learning 1 1 2026 2026-01-01 10.1007/978-3-032-00652-3_24 COLLEGE NANME COLLEGE CODE Swansea University Not Required This work was partly funded by the UKRI EPSRC CDT for Enhancing Human Interactions and Collaborations with Data and Intelligence Driven Systems, EP/S021892/1. Hough’s work is partly funded by the EPSRC FLUIDITY project, EP/X009343/1. 2025-09-15T17:15:14.7486598 2025-06-24T11:40:57.0325553 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Margarita Deli-Slavova 1 Julian Hough 0000-0002-4345-6759 2 69805__34556__9ddd55cedbb04ce9b85009e5ee974642.pdf DelislavovaHough2025.pdf 2025-06-24T11:43:17.0474403 Output 276228 application/pdf Accepted Manuscript true 2025-07-24T00:00:00.0000000 Author accepted manuscript document released under the terms of a Creative Commons CC-BY licence using the Swansea University Research Publications Policy (rights retention). true eng https://creativecommons.org/licenses/by/4.0/deed.en |
| title |
Evaluating the Feasibility of Using Smaller Large Language Models for Generating Impressions from Findings in Radiology Reports |
| spellingShingle |
Evaluating the Feasibility of Using Smaller Large Language Models for Generating Impressions from Findings in Radiology Reports Margarita Deli-Slavova Julian Hough |
| title_short |
Evaluating the Feasibility of Using Smaller Large Language Models for Generating Impressions from Findings in Radiology Reports |
| title_full |
Evaluating the Feasibility of Using Smaller Large Language Models for Generating Impressions from Findings in Radiology Reports |
| title_fullStr |
Evaluating the Feasibility of Using Smaller Large Language Models for Generating Impressions from Findings in Radiology Reports |
| title_full_unstemmed |
Evaluating the Feasibility of Using Smaller Large Language Models for Generating Impressions from Findings in Radiology Reports |
| title_sort |
Evaluating the Feasibility of Using Smaller Large Language Models for Generating Impressions from Findings in Radiology Reports |
| author_id_str_mv |
1218f2ae03a2a131ae5bdbf0ccc08b2b 082d773ae261d2bbf49434dd2608ab40 |
| author_id_fullname_str_mv |
1218f2ae03a2a131ae5bdbf0ccc08b2b_***_Margarita Deli-Slavova 082d773ae261d2bbf49434dd2608ab40_***_Julian Hough |
| author |
Margarita Deli-Slavova Julian Hough |
| author2 |
Margarita Deli-Slavova Julian Hough |
| format |
Conference Paper/Proceeding/Abstract |
| container_title |
Lecture Notes in Computer Science |
| container_volume |
16038 |
| container_start_page |
339 |
| publishDate |
2026 |
| institution |
Swansea University |
| isbn |
9783032006516 9783032006523 |
| issn |
0302-9743 1611-3349 |
| doi_str_mv |
10.1007/978-3-032-00652-3_24 |
| publisher |
Springer Nature Switzerland |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| document_store_str |
1 |
| active_str |
0 |
| published_date |
2026-01-01T07:43:53Z |
| _version_ |
1850744015734964224 |
| score |
11.08895 |

