Journal article 299 views 224 downloads
A joint learning framework for fake news detection
Displays, Volume: 90, Start page: 103154
Swansea University Authors:
Fabio Caraffini , Hassan Eshkiki
-
PDF | Version of Record
© 2025 The Authors. This is an open access article under the CC BY license.
Download (2.71MB)
DOI (Published version): 10.1016/j.displa.2025.103154
Abstract
This paper presents a joint learning framework for fake news detection, introducing an Enhanced BERT model that integrates named entity recognition, relational feature classification, and Stance Detection through a unified multi-task approach. The model incorporates task-specific masking and hierarc...
| Published in: | Displays |
|---|---|
| ISSN: | 0141-9382 |
| Published: |
Elsevier BV
2025
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa70027 |
| first_indexed |
2025-07-24T11:34:35Z |
|---|---|
| last_indexed |
2025-08-27T04:35:32Z |
| id |
cronfa70027 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-08-26T15:02:11.2705167</datestamp><bib-version>v2</bib-version><id>70027</id><entry>2025-07-24</entry><title>A joint learning framework for fake news detection</title><swanseaauthors><author><sid>d0b8d4e63d512d4d67a02a23dd20dfdb</sid><ORCID>0000-0001-9199-7368</ORCID><firstname>Fabio</firstname><surname>Caraffini</surname><name>Fabio Caraffini</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c9972b26a83de11ffe211070f26fe16b</sid><ORCID>0000-0001-7795-453X</ORCID><firstname>Hassan</firstname><surname>Eshkiki</surname><name>Hassan Eshkiki</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-07-24</date><deptcode>MACS</deptcode><abstract>This paper presents a joint learning framework for fake news detection, introducing an Enhanced BERT model that integrates named entity recognition, relational feature classification, and Stance Detection through a unified multi-task approach. The model incorporates task-specific masking and hierarchical attention mechanisms to capture both fine-grained and high-level contextual relationships across headlines and body text. Cross-task consistency losses are applied to ensure coherence and alignment with external factual knowledge. We analyse the average distance from components to the centroid of a news sample to differentiate genuine information from falsehoods in large-scale text data effectively. Experiments on two FakeNewsNet datasets show that our framework outperforms state-of-the-art models, with accuracy improvements of 2.17% and 1.03%. These results indicate the potential for applications needing detailed text processing, like automatic summarisation and misinformation detection.</abstract><type>Journal Article</type><journal>Displays</journal><volume>90</volume><journalNumber/><paginationStart>103154</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0141-9382</issnPrint><issnElectronic/><keywords>Joint learning; BERT; Semantics; NLP; Fake news; RFC; NER</keywords><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-12-01</publishedDate><doi>10.1016/j.displa.2025.103154</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm>SU Library paid the OA fee (TA Institutional Deal)</apcterm><funders>Swansea University</funders><projectreference/><lastEdited>2025-08-26T15:02:11.2705167</lastEdited><Created>2025-07-24T12:32:28.3611963</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Muhammad</firstname><surname>Abdullah</surname><orcid>0009-0000-9434-7977</orcid><order>1</order></author><author><firstname>Zan</firstname><surname>Hongying</surname><order>2</order></author><author><firstname>Arifa</firstname><surname>Javed</surname><orcid>0009-0002-6112-6398</orcid><order>3</order></author><author><firstname>Orken</firstname><surname>Mamyrbayev</surname><orcid>0000-0001-8318-3794</orcid><order>4</order></author><author><firstname>Fabio</firstname><surname>Caraffini</surname><orcid>0000-0001-9199-7368</orcid><order>5</order></author><author><firstname>Hassan</firstname><surname>Eshkiki</surname><orcid>0000-0001-7795-453X</orcid><order>6</order></author></authors><documents><document><filename>70027__34991__8c51e7ab3ef44feaa61df6bed8f46ec3.pdf</filename><originalFilename>70027.VoR.pdf</originalFilename><uploaded>2025-08-26T14:59:03.9757496</uploaded><type>Output</type><contentLength>2845430</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>© 2025 The Authors. This is an open access article under the CC BY license.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
| spelling |
2025-08-26T15:02:11.2705167 v2 70027 2025-07-24 A joint learning framework for fake news detection d0b8d4e63d512d4d67a02a23dd20dfdb 0000-0001-9199-7368 Fabio Caraffini Fabio Caraffini true false c9972b26a83de11ffe211070f26fe16b 0000-0001-7795-453X Hassan Eshkiki Hassan Eshkiki true false 2025-07-24 MACS This paper presents a joint learning framework for fake news detection, introducing an Enhanced BERT model that integrates named entity recognition, relational feature classification, and Stance Detection through a unified multi-task approach. The model incorporates task-specific masking and hierarchical attention mechanisms to capture both fine-grained and high-level contextual relationships across headlines and body text. Cross-task consistency losses are applied to ensure coherence and alignment with external factual knowledge. We analyse the average distance from components to the centroid of a news sample to differentiate genuine information from falsehoods in large-scale text data effectively. Experiments on two FakeNewsNet datasets show that our framework outperforms state-of-the-art models, with accuracy improvements of 2.17% and 1.03%. These results indicate the potential for applications needing detailed text processing, like automatic summarisation and misinformation detection. Journal Article Displays 90 103154 Elsevier BV 0141-9382 Joint learning; BERT; Semantics; NLP; Fake news; RFC; NER 1 12 2025 2025-12-01 10.1016/j.displa.2025.103154 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University SU Library paid the OA fee (TA Institutional Deal) Swansea University 2025-08-26T15:02:11.2705167 2025-07-24T12:32:28.3611963 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Muhammad Abdullah 0009-0000-9434-7977 1 Zan Hongying 2 Arifa Javed 0009-0002-6112-6398 3 Orken Mamyrbayev 0000-0001-8318-3794 4 Fabio Caraffini 0000-0001-9199-7368 5 Hassan Eshkiki 0000-0001-7795-453X 6 70027__34991__8c51e7ab3ef44feaa61df6bed8f46ec3.pdf 70027.VoR.pdf 2025-08-26T14:59:03.9757496 Output 2845430 application/pdf Version of Record true © 2025 The Authors. This is an open access article under the CC BY license. true eng http://creativecommons.org/licenses/by/4.0/ |
| title |
A joint learning framework for fake news detection |
| spellingShingle |
A joint learning framework for fake news detection Fabio Caraffini Hassan Eshkiki |
| title_short |
A joint learning framework for fake news detection |
| title_full |
A joint learning framework for fake news detection |
| title_fullStr |
A joint learning framework for fake news detection |
| title_full_unstemmed |
A joint learning framework for fake news detection |
| title_sort |
A joint learning framework for fake news detection |
| author_id_str_mv |
d0b8d4e63d512d4d67a02a23dd20dfdb c9972b26a83de11ffe211070f26fe16b |
| author_id_fullname_str_mv |
d0b8d4e63d512d4d67a02a23dd20dfdb_***_Fabio Caraffini c9972b26a83de11ffe211070f26fe16b_***_Hassan Eshkiki |
| author |
Fabio Caraffini Hassan Eshkiki |
| author2 |
Muhammad Abdullah Zan Hongying Arifa Javed Orken Mamyrbayev Fabio Caraffini Hassan Eshkiki |
| format |
Journal article |
| container_title |
Displays |
| container_volume |
90 |
| container_start_page |
103154 |
| publishDate |
2025 |
| institution |
Swansea University |
| issn |
0141-9382 |
| doi_str_mv |
10.1016/j.displa.2025.103154 |
| publisher |
Elsevier BV |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| document_store_str |
1 |
| active_str |
0 |
| description |
This paper presents a joint learning framework for fake news detection, introducing an Enhanced BERT model that integrates named entity recognition, relational feature classification, and Stance Detection through a unified multi-task approach. The model incorporates task-specific masking and hierarchical attention mechanisms to capture both fine-grained and high-level contextual relationships across headlines and body text. Cross-task consistency losses are applied to ensure coherence and alignment with external factual knowledge. We analyse the average distance from components to the centroid of a news sample to differentiate genuine information from falsehoods in large-scale text data effectively. Experiments on two FakeNewsNet datasets show that our framework outperforms state-of-the-art models, with accuracy improvements of 2.17% and 1.03%. These results indicate the potential for applications needing detailed text processing, like automatic summarisation and misinformation detection. |
| published_date |
2025-12-01T05:25:32Z |
| _version_ |
1851641280113672192 |
| score |
11.089967 |

