Journal article 161 views
Heat transport exploration through the GaN/diamond interfaces using machine learning potential
Zhanpeng Sun,
Yunfei Song,
Zijun Qi,
Xiang Sun,
Meiyong Liao,
Rui Li,
Qijun Wang
,
Lijie Li
,
Gai Wu
,
Wei Shen,
Sheng Liu
International Journal of Heat and Mass Transfer, Volume: 241, Start page: 126724
Swansea University Author:
Lijie Li
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1016/j.ijheatmasstransfer.2025.126724
Abstract
Heat transport exploration through the GaN/diamond interfaces using machine learning potential
| Published in: | International Journal of Heat and Mass Transfer |
|---|---|
| ISSN: | 0017-9310 |
| Published: |
Elsevier BV
2025
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa70617 |
| first_indexed |
2025-10-09T08:28:40Z |
|---|---|
| last_indexed |
2025-12-13T05:30:01Z |
| id |
cronfa70617 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-12-12T13:10:44.6613292</datestamp><bib-version>v2</bib-version><id>70617</id><entry>2025-10-09</entry><title>Heat transport exploration through the GaN/diamond interfaces using machine learning potential</title><swanseaauthors><author><sid>ed2c658b77679a28e4c1dcf95af06bd6</sid><ORCID>0000-0003-4630-7692</ORCID><firstname>Lijie</firstname><surname>Li</surname><name>Lijie Li</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2025-10-09</date><deptcode>ACEM</deptcode><abstract/><type>Journal Article</type><journal>International Journal of Heat and Mass Transfer</journal><volume>241</volume><journalNumber/><paginationStart>126724</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0017-9310</issnPrint><issnElectronic/><keywords>GaN/diamond heterostructures; Machine learning potential; Molecular dynamics; Thermal boundary resistance</keywords><publishedDay>15</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2025</publishedYear><publishedDate>2025-05-15</publishedDate><doi>10.1016/j.ijheatmasstransfer.2025.126724</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>This work was funded by the Knowledge Innovation Program of Wuhan-Shuguang (Grant Nos. 2023010201020243, 2023010201020255), the National Natural Science Foundation of China (Grant Nos. 52202045, 62004141, 92473102), the Shenzhen Science and Technology Program (Grant No. JCYJ20240813175906008), the Fundamental Research Funds for the Central Universities (Grant Nos. 2042023kf0112, 2042022kf1028), the Open Fund of Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration (Wuhan University) (Grant Nos. EMPI2024014, EMPI2024021, EMPI2023027), and the China Scholarship Council (Grant No. 202206275005).</funders><projectreference/><lastEdited>2025-12-12T13:10:44.6613292</lastEdited><Created>2025-10-09T09:25:28.4160794</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering</level></path><authors><author><firstname>Zhanpeng</firstname><surname>Sun</surname><order>1</order></author><author><firstname>Yunfei</firstname><surname>Song</surname><order>2</order></author><author><firstname>Zijun</firstname><surname>Qi</surname><order>3</order></author><author><firstname>Xiang</firstname><surname>Sun</surname><order>4</order></author><author><firstname>Meiyong</firstname><surname>Liao</surname><order>5</order></author><author><firstname>Rui</firstname><surname>Li</surname><order>6</order></author><author><firstname>Qijun</firstname><surname>Wang</surname><orcid>0000-0002-4299-3798</orcid><order>7</order></author><author><firstname>Lijie</firstname><surname>Li</surname><orcid>0000-0003-4630-7692</orcid><order>8</order></author><author><firstname>Gai</firstname><surname>Wu</surname><orcid>0000-0002-9726-6328</orcid><order>9</order></author><author><firstname>Wei</firstname><surname>Shen</surname><order>10</order></author><author><firstname>Sheng</firstname><surname>Liu</surname><order>11</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2025-12-12T13:10:44.6613292 v2 70617 2025-10-09 Heat transport exploration through the GaN/diamond interfaces using machine learning potential ed2c658b77679a28e4c1dcf95af06bd6 0000-0003-4630-7692 Lijie Li Lijie Li true false 2025-10-09 ACEM Journal Article International Journal of Heat and Mass Transfer 241 126724 Elsevier BV 0017-9310 GaN/diamond heterostructures; Machine learning potential; Molecular dynamics; Thermal boundary resistance 15 5 2025 2025-05-15 10.1016/j.ijheatmasstransfer.2025.126724 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University Not Required This work was funded by the Knowledge Innovation Program of Wuhan-Shuguang (Grant Nos. 2023010201020243, 2023010201020255), the National Natural Science Foundation of China (Grant Nos. 52202045, 62004141, 92473102), the Shenzhen Science and Technology Program (Grant No. JCYJ20240813175906008), the Fundamental Research Funds for the Central Universities (Grant Nos. 2042023kf0112, 2042022kf1028), the Open Fund of Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration (Wuhan University) (Grant Nos. EMPI2024014, EMPI2024021, EMPI2023027), and the China Scholarship Council (Grant No. 202206275005). 2025-12-12T13:10:44.6613292 2025-10-09T09:25:28.4160794 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering Zhanpeng Sun 1 Yunfei Song 2 Zijun Qi 3 Xiang Sun 4 Meiyong Liao 5 Rui Li 6 Qijun Wang 0000-0002-4299-3798 7 Lijie Li 0000-0003-4630-7692 8 Gai Wu 0000-0002-9726-6328 9 Wei Shen 10 Sheng Liu 11 |
| title |
Heat transport exploration through the GaN/diamond interfaces using machine learning potential |
| spellingShingle |
Heat transport exploration through the GaN/diamond interfaces using machine learning potential Lijie Li |
| title_short |
Heat transport exploration through the GaN/diamond interfaces using machine learning potential |
| title_full |
Heat transport exploration through the GaN/diamond interfaces using machine learning potential |
| title_fullStr |
Heat transport exploration through the GaN/diamond interfaces using machine learning potential |
| title_full_unstemmed |
Heat transport exploration through the GaN/diamond interfaces using machine learning potential |
| title_sort |
Heat transport exploration through the GaN/diamond interfaces using machine learning potential |
| author_id_str_mv |
ed2c658b77679a28e4c1dcf95af06bd6 |
| author_id_fullname_str_mv |
ed2c658b77679a28e4c1dcf95af06bd6_***_Lijie Li |
| author |
Lijie Li |
| author2 |
Zhanpeng Sun Yunfei Song Zijun Qi Xiang Sun Meiyong Liao Rui Li Qijun Wang Lijie Li Gai Wu Wei Shen Sheng Liu |
| format |
Journal article |
| container_title |
International Journal of Heat and Mass Transfer |
| container_volume |
241 |
| container_start_page |
126724 |
| publishDate |
2025 |
| institution |
Swansea University |
| issn |
0017-9310 |
| doi_str_mv |
10.1016/j.ijheatmasstransfer.2025.126724 |
| publisher |
Elsevier BV |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Electronic and Electrical Engineering |
| document_store_str |
0 |
| active_str |
0 |
| published_date |
2025-05-15T05:31:54Z |
| _version_ |
1856805708072222720 |
| score |
11.09611 |

