No Cover Image

Journal article 1387 views

Second fundamental form and gradient of Neumann semigroups

Feng-yu Wang

Journal of Functional Analysis, Volume: 256, Issue: 10, Pages: 3461 - 3469

Swansea University Author: Feng-yu Wang

Full text not available from this repository: check for access using links below.

Published in: Journal of Functional Analysis
ISSN: 0022-1236
Published: 2009
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa7768
first_indexed 2013-07-23T11:59:20Z
last_indexed 2018-02-09T04:36:20Z
id cronfa7768
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2013-06-17T15:33:26.1515058</datestamp><bib-version>v2</bib-version><id>7768</id><entry>2012-02-23</entry><title>Second fundamental form and gradient of Neumann semigroups</title><swanseaauthors><author><sid>6734caa6d9a388bd3bd8eb0a1131d0de</sid><firstname>Feng-yu</firstname><surname>Wang</surname><name>Feng-yu Wang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2012-02-23</date><abstract></abstract><type>Journal Article</type><journal>Journal of Functional Analysis</journal><volume>256</volume><journalNumber>10</journalNumber><paginationStart>3461</paginationStart><paginationEnd>3469</paginationEnd><publisher/><placeOfPublication/><issnPrint>0022-1236</issnPrint><issnElectronic/><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2009</publishedYear><publishedDate>2009-12-31</publishedDate><doi>10.1016/j.jfa.2008.12.010</doi><url/><notes></notes><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2013-06-17T15:33:26.1515058</lastEdited><Created>2012-02-23T17:02:15.0000000</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Feng-yu</firstname><surname>Wang</surname><order>1</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2013-06-17T15:33:26.1515058 v2 7768 2012-02-23 Second fundamental form and gradient of Neumann semigroups 6734caa6d9a388bd3bd8eb0a1131d0de Feng-yu Wang Feng-yu Wang true false 2012-02-23 Journal Article Journal of Functional Analysis 256 10 3461 3469 0022-1236 31 12 2009 2009-12-31 10.1016/j.jfa.2008.12.010 COLLEGE NANME COLLEGE CODE Swansea University 2013-06-17T15:33:26.1515058 2012-02-23T17:02:15.0000000 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Feng-yu Wang 1
title Second fundamental form and gradient of Neumann semigroups
spellingShingle Second fundamental form and gradient of Neumann semigroups
Feng-yu Wang
title_short Second fundamental form and gradient of Neumann semigroups
title_full Second fundamental form and gradient of Neumann semigroups
title_fullStr Second fundamental form and gradient of Neumann semigroups
title_full_unstemmed Second fundamental form and gradient of Neumann semigroups
title_sort Second fundamental form and gradient of Neumann semigroups
author_id_str_mv 6734caa6d9a388bd3bd8eb0a1131d0de
author_id_fullname_str_mv 6734caa6d9a388bd3bd8eb0a1131d0de_***_Feng-yu Wang
author Feng-yu Wang
author2 Feng-yu Wang
format Journal article
container_title Journal of Functional Analysis
container_volume 256
container_issue 10
container_start_page 3461
publishDate 2009
institution Swansea University
issn 0022-1236
doi_str_mv 10.1016/j.jfa.2008.12.010
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 0
active_str 0
published_date 2009-12-31T18:16:00Z
_version_ 1822064545721483264
score 11.048302