No Cover Image

Journal article 1563 views 151 downloads

In situelectromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap

Michael Charlton, Dirk van der Werf Orcid Logo, Niels Madsen Orcid Logo, Aled Isaac Orcid Logo, Stefan Eriksson Orcid Logo

New Journal of Physics, Volume: 16, Issue: 1, Start page: 013037

Swansea University Authors: Michael Charlton, Dirk van der Werf Orcid Logo, Niels Madsen Orcid Logo, Aled Isaac Orcid Logo, Stefan Eriksson Orcid Logo

  • 2014a.pdf

    PDF | Version of Record

    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence (https://creativecommons.org/licenses/by/3.0/). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

    Download (686.32KB)

DOI (Published version): 10.1088/1367-2630/16/1/013037

Abstract

We demonstrate a novel detection method for the cyclotron resonance frequency of an electron plasma in a Penning–Malmberg trap. With this technique, the electron plasma is used as an in situ diagnostic tool for the measurement of the static magnetic field and the microwave electric field in the trap...

Full description

Published in: New Journal of Physics
Published: 2014
URI: https://cronfa.swan.ac.uk/Record/cronfa17396
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2014-04-17T01:30:02Z
last_indexed 2019-08-09T14:49:57Z
id cronfa17396
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-08-08T10:57:05.0299272</datestamp><bib-version>v2</bib-version><id>17396</id><entry>2014-02-26</entry><title>In situelectromagnetic field diagnostics with an electron plasma in a Penning&#x2013;Malmberg trap</title><swanseaauthors><author><sid>d9099cdd0f182eb9a1c8fc36ed94f53f</sid><firstname>Michael</firstname><surname>Charlton</surname><name>Michael Charlton</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4a4149ebce588e432f310f4ab44dd82a</sid><ORCID>0000-0001-5436-5214</ORCID><firstname>Dirk</firstname><surname>van der Werf</surname><name>Dirk van der Werf</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e348e4d768ee19c1d0c68ce3a66d6303</sid><ORCID>0000-0002-7372-0784</ORCID><firstname>Niels</firstname><surname>Madsen</surname><name>Niels Madsen</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>06d7ed42719ef7bb697cf780c63e26f0</sid><ORCID>0000-0002-7813-1903</ORCID><firstname>Aled</firstname><surname>Isaac</surname><name>Aled Isaac</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>785cbd474febb1bfa9c0e14abaf9c4a8</sid><ORCID>0000-0002-5390-1879</ORCID><firstname>Stefan</firstname><surname>Eriksson</surname><name>Stefan Eriksson</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2014-02-26</date><deptcode>FGSEN</deptcode><abstract>We demonstrate a novel detection method for the cyclotron resonance frequency of an electron plasma in a Penning&#x2013;Malmberg trap. With this technique, the electron plasma is used as an in situ diagnostic tool for the measurement of the static magnetic field and the microwave electric field in the trap. The cyclotron motion of the electron plasma is excited by microwave radiation and the temperature change of the plasma is measured non-destructively by monitoring the plasma&#x2019;s quadrupole mode frequency. The spatially resolved microwave electric field strength can be inferred from the plasma temperature change and the magnetic field is found through the cyclotron resonance frequency. These measurements were used extensively in the recently reported demonstration of resonant quantum interactions with antihydrogen.</abstract><type>Journal Article</type><journal>New Journal of Physics</journal><volume>16</volume><journalNumber>1</journalNumber><paginationStart>013037</paginationStart><publisher/><keywords/><publishedDay>21</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-01-21</publishedDate><doi>10.1088/1367-2630/16/1/013037</doi><url/><notes/><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-08-08T10:57:05.0299272</lastEdited><Created>2014-02-26T19:12:04.1479657</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Michael</firstname><surname>Charlton</surname><order>1</order></author><author><firstname>Dirk</firstname><surname>van der Werf</surname><orcid>0000-0001-5436-5214</orcid><order>2</order></author><author><firstname>Niels</firstname><surname>Madsen</surname><orcid>0000-0002-7372-0784</orcid><order>3</order></author><author><firstname>Aled</firstname><surname>Isaac</surname><orcid>0000-0002-7813-1903</orcid><order>4</order></author><author><firstname>Stefan</firstname><surname>Eriksson</surname><orcid>0000-0002-5390-1879</orcid><order>5</order></author></authors><documents><document><filename>0017396-22062016140929.pdf</filename><originalFilename>2014a.pdf</originalFilename><uploaded>2014-06-20T09:26:05.0630000</uploaded><type>Output</type><contentLength>704486</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-06-22T13:40:38.7700000</embargoDate><documentNotes>Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence (https://creativecommons.org/licenses/by/3.0/). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.</documentNotes><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2019-08-08T10:57:05.0299272 v2 17396 2014-02-26 In situelectromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap d9099cdd0f182eb9a1c8fc36ed94f53f Michael Charlton Michael Charlton true false 4a4149ebce588e432f310f4ab44dd82a 0000-0001-5436-5214 Dirk van der Werf Dirk van der Werf true false e348e4d768ee19c1d0c68ce3a66d6303 0000-0002-7372-0784 Niels Madsen Niels Madsen true false 06d7ed42719ef7bb697cf780c63e26f0 0000-0002-7813-1903 Aled Isaac Aled Isaac true false 785cbd474febb1bfa9c0e14abaf9c4a8 0000-0002-5390-1879 Stefan Eriksson Stefan Eriksson true false 2014-02-26 FGSEN We demonstrate a novel detection method for the cyclotron resonance frequency of an electron plasma in a Penning–Malmberg trap. With this technique, the electron plasma is used as an in situ diagnostic tool for the measurement of the static magnetic field and the microwave electric field in the trap. The cyclotron motion of the electron plasma is excited by microwave radiation and the temperature change of the plasma is measured non-destructively by monitoring the plasma’s quadrupole mode frequency. The spatially resolved microwave electric field strength can be inferred from the plasma temperature change and the magnetic field is found through the cyclotron resonance frequency. These measurements were used extensively in the recently reported demonstration of resonant quantum interactions with antihydrogen. Journal Article New Journal of Physics 16 1 013037 21 1 2014 2014-01-21 10.1088/1367-2630/16/1/013037 COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University 2019-08-08T10:57:05.0299272 2014-02-26T19:12:04.1479657 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Michael Charlton 1 Dirk van der Werf 0000-0001-5436-5214 2 Niels Madsen 0000-0002-7372-0784 3 Aled Isaac 0000-0002-7813-1903 4 Stefan Eriksson 0000-0002-5390-1879 5 0017396-22062016140929.pdf 2014a.pdf 2014-06-20T09:26:05.0630000 Output 704486 application/pdf Version of Record true 2016-06-22T13:40:38.7700000 Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence (https://creativecommons.org/licenses/by/3.0/). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. true
title In situelectromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap
spellingShingle In situelectromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap
Michael Charlton
Dirk van der Werf
Niels Madsen
Aled Isaac
Stefan Eriksson
title_short In situelectromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap
title_full In situelectromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap
title_fullStr In situelectromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap
title_full_unstemmed In situelectromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap
title_sort In situelectromagnetic field diagnostics with an electron plasma in a Penning–Malmberg trap
author_id_str_mv d9099cdd0f182eb9a1c8fc36ed94f53f
4a4149ebce588e432f310f4ab44dd82a
e348e4d768ee19c1d0c68ce3a66d6303
06d7ed42719ef7bb697cf780c63e26f0
785cbd474febb1bfa9c0e14abaf9c4a8
author_id_fullname_str_mv d9099cdd0f182eb9a1c8fc36ed94f53f_***_Michael Charlton
4a4149ebce588e432f310f4ab44dd82a_***_Dirk van der Werf
e348e4d768ee19c1d0c68ce3a66d6303_***_Niels Madsen
06d7ed42719ef7bb697cf780c63e26f0_***_Aled Isaac
785cbd474febb1bfa9c0e14abaf9c4a8_***_Stefan Eriksson
author Michael Charlton
Dirk van der Werf
Niels Madsen
Aled Isaac
Stefan Eriksson
author2 Michael Charlton
Dirk van der Werf
Niels Madsen
Aled Isaac
Stefan Eriksson
format Journal article
container_title New Journal of Physics
container_volume 16
container_issue 1
container_start_page 013037
publishDate 2014
institution Swansea University
doi_str_mv 10.1088/1367-2630/16/1/013037
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description We demonstrate a novel detection method for the cyclotron resonance frequency of an electron plasma in a Penning–Malmberg trap. With this technique, the electron plasma is used as an in situ diagnostic tool for the measurement of the static magnetic field and the microwave electric field in the trap. The cyclotron motion of the electron plasma is excited by microwave radiation and the temperature change of the plasma is measured non-destructively by monitoring the plasma’s quadrupole mode frequency. The spatially resolved microwave electric field strength can be inferred from the plasma temperature change and the magnetic field is found through the cyclotron resonance frequency. These measurements were used extensively in the recently reported demonstration of resonant quantum interactions with antihydrogen.
published_date 2014-01-21T03:20:04Z
_version_ 1763750554984513536
score 11.036706