Journal article 1275 views
Chloroplast precursor proteins compete to form early import intermediates in isolated pea chloroplasts
Paula Row,
John C Gray
Journal of Experimental Botany, Volume: 52, Issue: 354, Pages: 47 - 56
Swansea University Author: Paula Row
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1093/jexbot/52.354.47
Abstract
In order to ascertain whether there is one site for the import of precursor proteins into chloroplasts or whether different precursor proteins are imported via different import machineries, chloroplasts were incubated with large quantities of the precursor of the 33 kDa subunit of the oxygen-evolvin...
Published in: | Journal of Experimental Botany |
---|---|
Published: |
2001
|
Online Access: |
http://jxb.oxfordjournals.org/content/52/354/47.full.pdf |
URI: | https://cronfa.swan.ac.uk/Record/cronfa18375 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2014-09-11T01:59:10Z |
---|---|
last_indexed |
2018-02-09T04:52:56Z |
id |
cronfa18375 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2014-09-10T14:31:44.6805681</datestamp><bib-version>v2</bib-version><id>18375</id><entry>2014-09-10</entry><title>Chloroplast precursor proteins compete to form early import intermediates in isolated pea chloroplasts</title><swanseaauthors><author><sid>99bb528b2f8fb62aabbdad101d53ba96</sid><firstname>Paula</firstname><surname>Row</surname><name>Paula Row</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2014-09-10</date><deptcode>BMS</deptcode><abstract>In order to ascertain whether there is one site for the import of precursor proteins into chloroplasts or whether different precursor proteins are imported via different import machineries, chloroplasts were incubated with large quantities of the precursor of the 33 kDa subunit of the oxygen-evolving complex (pOE33) or the precursor of the light-harvesting chlorophyll a/b-binding protein (pLHCP) and tested for their ability to import a wide range of other chloroplast precursor proteins. Both pOE33 and pLHCP competed for import into chloroplasts with precursors of the stromally-targeted small subunit of Rubisco (pSSu), ferredoxin NADP(+) reductase (pFNR) and porphobilinogen deaminase; the thylakoid membrane proteins LHCP and the Rieske iron-sulphur protein (pRieske protein); ferrochelatase and the gamma subunit of the ATP synthase (which are both associated with the thylakoid membrane); the thylakoid lumenal protein plastocyanin and the phosphate translocator, an integral membrane protein of the inner envelope. The concentrations of pOE33 or pLHCP required to cause half-maximal inhibition of import ranged between 0.2 and 4.9 microM. These results indicate that all of these proteins are imported into the chloroplast by a common import machinery. Incubation of chloroplasts with pOE33 inhibited the formation of early import intermediates of pSSu, pFNR and pRieske protein.</abstract><type>Journal Article</type><journal>Journal of Experimental Botany</journal><volume>52</volume><journalNumber>354</journalNumber><paginationStart>47</paginationStart><paginationEnd>56</paginationEnd><publisher/><keywords>In order to ascertain whether there is one site for the import of precursor proteins into chloroplasts or whether different precursor proteins are imported via different import machineries, chloroplasts were incubated with large quantities of the precursor of the 33 kDa subunit of the oxygen-evolving complex (pOE33) or the precursor of the light-harvesting chlorophyll a/b-binding protein (pLHCP) and tested for their ability to import a wide range of other chloroplast precursor proteins. Both pOE33 and pLHCP competed for import into chloroplasts with precursors of the stromally-targeted small subunit of Rubisco (pSSu), ferredoxin NADP(+) reductase (pFNR) and porphobilinogen deaminase; the thylakoid membrane proteins LHCP and the Rieske iron-sulphur protein (pRieske protein); ferrochelatase and the gamma subunit of the ATP synthase (which are both associated with the thylakoid membrane); the thylakoid lumenal protein plastocyanin and the phosphate translocator, an integral membrane protein of the inner envelope. The concentrations of pOE33 or pLHCP required to cause half-maximal inhibition of import ranged between 0.2 and 4.9 microM. These results indicate that all of these proteins are imported into the chloroplast by a common import machinery. Incubation of chloroplasts with pOE33 inhibited the formation of early import intermediates of pSSu, pFNR and pRieske protein.</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2001</publishedYear><publishedDate>2001-12-31</publishedDate><doi>10.1093/jexbot/52.354.47</doi><url>http://jxb.oxfordjournals.org/content/52/354/47.full.pdf</url><notes/><college>COLLEGE NANME</college><department>Biomedical Sciences</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BMS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2014-09-10T14:31:44.6805681</lastEdited><Created>2014-09-10T13:25:35.5369479</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>Paula</firstname><surname>Row</surname><order>1</order></author><author><firstname>John C</firstname><surname>Gray</surname><order>2</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2014-09-10T14:31:44.6805681 v2 18375 2014-09-10 Chloroplast precursor proteins compete to form early import intermediates in isolated pea chloroplasts 99bb528b2f8fb62aabbdad101d53ba96 Paula Row Paula Row true false 2014-09-10 BMS In order to ascertain whether there is one site for the import of precursor proteins into chloroplasts or whether different precursor proteins are imported via different import machineries, chloroplasts were incubated with large quantities of the precursor of the 33 kDa subunit of the oxygen-evolving complex (pOE33) or the precursor of the light-harvesting chlorophyll a/b-binding protein (pLHCP) and tested for their ability to import a wide range of other chloroplast precursor proteins. Both pOE33 and pLHCP competed for import into chloroplasts with precursors of the stromally-targeted small subunit of Rubisco (pSSu), ferredoxin NADP(+) reductase (pFNR) and porphobilinogen deaminase; the thylakoid membrane proteins LHCP and the Rieske iron-sulphur protein (pRieske protein); ferrochelatase and the gamma subunit of the ATP synthase (which are both associated with the thylakoid membrane); the thylakoid lumenal protein plastocyanin and the phosphate translocator, an integral membrane protein of the inner envelope. The concentrations of pOE33 or pLHCP required to cause half-maximal inhibition of import ranged between 0.2 and 4.9 microM. These results indicate that all of these proteins are imported into the chloroplast by a common import machinery. Incubation of chloroplasts with pOE33 inhibited the formation of early import intermediates of pSSu, pFNR and pRieske protein. Journal Article Journal of Experimental Botany 52 354 47 56 In order to ascertain whether there is one site for the import of precursor proteins into chloroplasts or whether different precursor proteins are imported via different import machineries, chloroplasts were incubated with large quantities of the precursor of the 33 kDa subunit of the oxygen-evolving complex (pOE33) or the precursor of the light-harvesting chlorophyll a/b-binding protein (pLHCP) and tested for their ability to import a wide range of other chloroplast precursor proteins. Both pOE33 and pLHCP competed for import into chloroplasts with precursors of the stromally-targeted small subunit of Rubisco (pSSu), ferredoxin NADP(+) reductase (pFNR) and porphobilinogen deaminase; the thylakoid membrane proteins LHCP and the Rieske iron-sulphur protein (pRieske protein); ferrochelatase and the gamma subunit of the ATP synthase (which are both associated with the thylakoid membrane); the thylakoid lumenal protein plastocyanin and the phosphate translocator, an integral membrane protein of the inner envelope. The concentrations of pOE33 or pLHCP required to cause half-maximal inhibition of import ranged between 0.2 and 4.9 microM. These results indicate that all of these proteins are imported into the chloroplast by a common import machinery. Incubation of chloroplasts with pOE33 inhibited the formation of early import intermediates of pSSu, pFNR and pRieske protein. 31 12 2001 2001-12-31 10.1093/jexbot/52.354.47 http://jxb.oxfordjournals.org/content/52/354/47.full.pdf COLLEGE NANME Biomedical Sciences COLLEGE CODE BMS Swansea University 2014-09-10T14:31:44.6805681 2014-09-10T13:25:35.5369479 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine Paula Row 1 John C Gray 2 |
title |
Chloroplast precursor proteins compete to form early import intermediates in isolated pea chloroplasts |
spellingShingle |
Chloroplast precursor proteins compete to form early import intermediates in isolated pea chloroplasts Paula Row |
title_short |
Chloroplast precursor proteins compete to form early import intermediates in isolated pea chloroplasts |
title_full |
Chloroplast precursor proteins compete to form early import intermediates in isolated pea chloroplasts |
title_fullStr |
Chloroplast precursor proteins compete to form early import intermediates in isolated pea chloroplasts |
title_full_unstemmed |
Chloroplast precursor proteins compete to form early import intermediates in isolated pea chloroplasts |
title_sort |
Chloroplast precursor proteins compete to form early import intermediates in isolated pea chloroplasts |
author_id_str_mv |
99bb528b2f8fb62aabbdad101d53ba96 |
author_id_fullname_str_mv |
99bb528b2f8fb62aabbdad101d53ba96_***_Paula Row |
author |
Paula Row |
author2 |
Paula Row John C Gray |
format |
Journal article |
container_title |
Journal of Experimental Botany |
container_volume |
52 |
container_issue |
354 |
container_start_page |
47 |
publishDate |
2001 |
institution |
Swansea University |
doi_str_mv |
10.1093/jexbot/52.354.47 |
college_str |
Faculty of Medicine, Health and Life Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofmedicinehealthandlifesciences |
hierarchy_top_title |
Faculty of Medicine, Health and Life Sciences |
hierarchy_parent_id |
facultyofmedicinehealthandlifesciences |
hierarchy_parent_title |
Faculty of Medicine, Health and Life Sciences |
department_str |
Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine |
url |
http://jxb.oxfordjournals.org/content/52/354/47.full.pdf |
document_store_str |
0 |
active_str |
0 |
description |
In order to ascertain whether there is one site for the import of precursor proteins into chloroplasts or whether different precursor proteins are imported via different import machineries, chloroplasts were incubated with large quantities of the precursor of the 33 kDa subunit of the oxygen-evolving complex (pOE33) or the precursor of the light-harvesting chlorophyll a/b-binding protein (pLHCP) and tested for their ability to import a wide range of other chloroplast precursor proteins. Both pOE33 and pLHCP competed for import into chloroplasts with precursors of the stromally-targeted small subunit of Rubisco (pSSu), ferredoxin NADP(+) reductase (pFNR) and porphobilinogen deaminase; the thylakoid membrane proteins LHCP and the Rieske iron-sulphur protein (pRieske protein); ferrochelatase and the gamma subunit of the ATP synthase (which are both associated with the thylakoid membrane); the thylakoid lumenal protein plastocyanin and the phosphate translocator, an integral membrane protein of the inner envelope. The concentrations of pOE33 or pLHCP required to cause half-maximal inhibition of import ranged between 0.2 and 4.9 microM. These results indicate that all of these proteins are imported into the chloroplast by a common import machinery. Incubation of chloroplasts with pOE33 inhibited the formation of early import intermediates of pSSu, pFNR and pRieske protein. |
published_date |
2001-12-31T03:21:32Z |
_version_ |
1763750646994960384 |
score |
11.03559 |