No Cover Image

Journal article 737 views 126 downloads

Validation of Optimal Fourier Rheometry for rapidly gelling materials and its application in the study of collagen gelation / Daniel Curtis, A. Holder, N. Badiei, J. Claypole, M. Walters, B. Thomas, Matthew Barrow, Davide Deganello, Rowan Brown, Rhodri Williams, Karl Hawkins

Journal of Non-Newtonian Fluid Mechanics, Volume: 222, Pages: 253 - 259

Swansea University Authors: Daniel Curtis, Matthew Barrow, Davide Deganello, Rowan Brown, Rhodri Williams, Karl Hawkins

Abstract

Rheological Gel Point measurements may incur errors in the case of rapid gelling systemsdue to the limitations of multiple frequency oscillatory shear techniques such as frequency sweeps and Fourier Transform Mechanical Spectroscopy, FTMS. These limitations are associated with sample mutation and da...

Full description

Published in: Journal of Non-Newtonian Fluid Mechanics
ISSN: 0377-0257
Published: 2015
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa20273
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2015-03-10T03:00:29Z
last_indexed 2021-01-15T03:35:24Z
id cronfa20273
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-01-14T13:33:08.4098794</datestamp><bib-version>v2</bib-version><id>20273</id><entry>2015-03-09</entry><title>Validation of Optimal Fourier Rheometry for rapidly gelling materials and its application in the study of collagen gelation</title><swanseaauthors><author><sid>e76ff28a23af2fe37099c4e9a24c1e58</sid><ORCID>0000-0002-6955-0524</ORCID><firstname>Daniel</firstname><surname>Curtis</surname><name>Daniel Curtis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>790ab1e3ca1ffb040d760426de14a381</sid><ORCID>0000-0001-9629-6026</ORCID><firstname>Matthew</firstname><surname>Barrow</surname><name>Matthew Barrow</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>ea38a0040bdfd3875506189e3629b32a</sid><ORCID>0000-0001-8341-4177</ORCID><firstname>Davide</firstname><surname>Deganello</surname><name>Davide Deganello</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>d7db8d42c476dfa69c15ce06d29bd863</sid><ORCID>0000-0003-3628-2524</ORCID><firstname>Rowan</firstname><surname>Brown</surname><name>Rowan Brown</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>642bf793695f412ed932f1ea4d9bc3f1</sid><ORCID>0000-0002-6912-5288</ORCID><firstname>Rhodri</firstname><surname>Williams</surname><name>Rhodri Williams</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>77c39404a9a98c6e2283d84815cba053</sid><ORCID>0000-0003-0174-4151</ORCID><firstname>Karl</firstname><surname>Hawkins</surname><name>Karl Hawkins</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-03-09</date><deptcode>CHEG</deptcode><abstract>Rheological Gel Point measurements may incur errors in the case of rapid gelling systemsdue to the limitations of multiple frequency oscillatory shear techniques such as frequency sweeps and Fourier Transform Mechanical Spectroscopy, FTMS. These limitations are associated with sample mutation and data interpolation. In the present paper we consider how an alternative rapid characterisation technique known as Optimal Fourier Rheometry, OFR, can be used to study a rapidly gelling material, namely collagen at near physiological temperatures. The OFR technique is validated using a model reference gelling system whose GP characteristics have been widely reported. An analysis of the susceptibility of OFR measurements to rheometrical artefacts is made prior to its use in study of rapid gelling collagen gels formed over a range of physiologically relevant collagen concentrations. The results of this OFR are the first measurements of the stress relaxation characteristics of collagen gels in a single rheological experiment.</abstract><type>Journal Article</type><journal>Journal of Non-Newtonian Fluid Mechanics</journal><volume>222</volume><journalNumber/><paginationStart>253</paginationStart><paginationEnd>259</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0377-0257</issnPrint><issnElectronic/><keywords>Gel Point; Mutation Number; OFR; FTMS; Collagen.</keywords><publishedDay>1</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-08-01</publishedDate><doi>10.1016/j.jnnfm.2015.01.003</doi><url>http://dx.doi.org/10.1016/j.jnnfm.2015.01.003</url><notes>2017 Reporting the first characterisation of complex biogel materials undergoing rapid rheological transitions using a technique known as Optimal Fourier Rheometry, this paper was presented at an international conference (British Society of Rheology, Durham) and initiated collaboration with UK (University of Glasgow, J. Rheology, DOI 10.1122/1.4953443) and international institutions (Faculty of Engineering, MIT). The technique is currently being exploited under the EPSRC Centre for Innovative Manufacturing in Large Area Electronics (EP/K03099X/1, &#xA3;5.6M) and underpins an invited proposal (&#xA3;5.4M) to the National Formulation Centre (CPI) supported by international industrial investment totalling &#xA3;2.3M. IF = 2.172</notes><college>COLLEGE NANME</college><department>Chemical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CHEG</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-14T13:33:08.4098794</lastEdited><Created>2015-03-09T07:54:20.1818409</Created><path><level id="1">College of Engineering</level><level id="2">Engineering</level></path><authors><author><firstname>Daniel</firstname><surname>Curtis</surname><orcid>0000-0002-6955-0524</orcid><order>1</order></author><author><firstname>A.</firstname><surname>Holder</surname><order>2</order></author><author><firstname>N.</firstname><surname>Badiei</surname><order>3</order></author><author><firstname>J.</firstname><surname>Claypole</surname><order>4</order></author><author><firstname>M.</firstname><surname>Walters</surname><order>5</order></author><author><firstname>B.</firstname><surname>Thomas</surname><order>6</order></author><author><firstname>Matthew</firstname><surname>Barrow</surname><orcid>0000-0001-9629-6026</orcid><order>7</order></author><author><firstname>Davide</firstname><surname>Deganello</surname><orcid>0000-0001-8341-4177</orcid><order>8</order></author><author><firstname>Rowan</firstname><surname>Brown</surname><orcid>0000-0003-3628-2524</orcid><order>9</order></author><author><firstname>Rhodri</firstname><surname>Williams</surname><orcid>0000-0002-6912-5288</orcid><order>10</order></author><author><firstname>Karl</firstname><surname>Hawkins</surname><orcid>0000-0003-0174-4151</orcid><order>11</order></author></authors><documents><document><filename>0020273-15072016140415.pdf</filename><originalFilename>Curtis2015-2.pdf</originalFilename><uploaded>2016-07-15T14:04:15.7530000</uploaded><type>Output</type><contentLength>864856</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><action/><embargoDate>2016-07-15T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2021-01-14T13:33:08.4098794 v2 20273 2015-03-09 Validation of Optimal Fourier Rheometry for rapidly gelling materials and its application in the study of collagen gelation e76ff28a23af2fe37099c4e9a24c1e58 0000-0002-6955-0524 Daniel Curtis Daniel Curtis true false 790ab1e3ca1ffb040d760426de14a381 0000-0001-9629-6026 Matthew Barrow Matthew Barrow true false ea38a0040bdfd3875506189e3629b32a 0000-0001-8341-4177 Davide Deganello Davide Deganello true false d7db8d42c476dfa69c15ce06d29bd863 0000-0003-3628-2524 Rowan Brown Rowan Brown true false 642bf793695f412ed932f1ea4d9bc3f1 0000-0002-6912-5288 Rhodri Williams Rhodri Williams true false 77c39404a9a98c6e2283d84815cba053 0000-0003-0174-4151 Karl Hawkins Karl Hawkins true false 2015-03-09 CHEG Rheological Gel Point measurements may incur errors in the case of rapid gelling systemsdue to the limitations of multiple frequency oscillatory shear techniques such as frequency sweeps and Fourier Transform Mechanical Spectroscopy, FTMS. These limitations are associated with sample mutation and data interpolation. In the present paper we consider how an alternative rapid characterisation technique known as Optimal Fourier Rheometry, OFR, can be used to study a rapidly gelling material, namely collagen at near physiological temperatures. The OFR technique is validated using a model reference gelling system whose GP characteristics have been widely reported. An analysis of the susceptibility of OFR measurements to rheometrical artefacts is made prior to its use in study of rapid gelling collagen gels formed over a range of physiologically relevant collagen concentrations. The results of this OFR are the first measurements of the stress relaxation characteristics of collagen gels in a single rheological experiment. Journal Article Journal of Non-Newtonian Fluid Mechanics 222 253 259 0377-0257 Gel Point; Mutation Number; OFR; FTMS; Collagen. 1 8 2015 2015-08-01 10.1016/j.jnnfm.2015.01.003 http://dx.doi.org/10.1016/j.jnnfm.2015.01.003 2017 Reporting the first characterisation of complex biogel materials undergoing rapid rheological transitions using a technique known as Optimal Fourier Rheometry, this paper was presented at an international conference (British Society of Rheology, Durham) and initiated collaboration with UK (University of Glasgow, J. Rheology, DOI 10.1122/1.4953443) and international institutions (Faculty of Engineering, MIT). The technique is currently being exploited under the EPSRC Centre for Innovative Manufacturing in Large Area Electronics (EP/K03099X/1, £5.6M) and underpins an invited proposal (£5.4M) to the National Formulation Centre (CPI) supported by international industrial investment totalling £2.3M. IF = 2.172 COLLEGE NANME Chemical Engineering COLLEGE CODE CHEG Swansea University 2021-01-14T13:33:08.4098794 2015-03-09T07:54:20.1818409 College of Engineering Engineering Daniel Curtis 0000-0002-6955-0524 1 A. Holder 2 N. Badiei 3 J. Claypole 4 M. Walters 5 B. Thomas 6 Matthew Barrow 0000-0001-9629-6026 7 Davide Deganello 0000-0001-8341-4177 8 Rowan Brown 0000-0003-3628-2524 9 Rhodri Williams 0000-0002-6912-5288 10 Karl Hawkins 0000-0003-0174-4151 11 0020273-15072016140415.pdf Curtis2015-2.pdf 2016-07-15T14:04:15.7530000 Output 864856 application/pdf Version of Record true 2016-07-15T00:00:00.0000000 false
title Validation of Optimal Fourier Rheometry for rapidly gelling materials and its application in the study of collagen gelation
spellingShingle Validation of Optimal Fourier Rheometry for rapidly gelling materials and its application in the study of collagen gelation
Daniel, Curtis
Matthew, Barrow
Davide, Deganello
Rowan, Brown
Rhodri, Williams
Karl, Hawkins
title_short Validation of Optimal Fourier Rheometry for rapidly gelling materials and its application in the study of collagen gelation
title_full Validation of Optimal Fourier Rheometry for rapidly gelling materials and its application in the study of collagen gelation
title_fullStr Validation of Optimal Fourier Rheometry for rapidly gelling materials and its application in the study of collagen gelation
title_full_unstemmed Validation of Optimal Fourier Rheometry for rapidly gelling materials and its application in the study of collagen gelation
title_sort Validation of Optimal Fourier Rheometry for rapidly gelling materials and its application in the study of collagen gelation
author_id_str_mv e76ff28a23af2fe37099c4e9a24c1e58
790ab1e3ca1ffb040d760426de14a381
ea38a0040bdfd3875506189e3629b32a
d7db8d42c476dfa69c15ce06d29bd863
642bf793695f412ed932f1ea4d9bc3f1
77c39404a9a98c6e2283d84815cba053
author_id_fullname_str_mv e76ff28a23af2fe37099c4e9a24c1e58_***_Daniel, Curtis
790ab1e3ca1ffb040d760426de14a381_***_Matthew, Barrow
ea38a0040bdfd3875506189e3629b32a_***_Davide, Deganello
d7db8d42c476dfa69c15ce06d29bd863_***_Rowan, Brown
642bf793695f412ed932f1ea4d9bc3f1_***_Rhodri, Williams
77c39404a9a98c6e2283d84815cba053_***_Karl, Hawkins
author Daniel, Curtis
Matthew, Barrow
Davide, Deganello
Rowan, Brown
Rhodri, Williams
Karl, Hawkins
author2 Daniel Curtis
A. Holder
N. Badiei
J. Claypole
M. Walters
B. Thomas
Matthew Barrow
Davide Deganello
Rowan Brown
Rhodri Williams
Karl Hawkins
format Journal article
container_title Journal of Non-Newtonian Fluid Mechanics
container_volume 222
container_start_page 253
publishDate 2015
institution Swansea University
issn 0377-0257
doi_str_mv 10.1016/j.jnnfm.2015.01.003
college_str College of Engineering
hierarchytype
hierarchy_top_id collegeofengineering
hierarchy_top_title College of Engineering
hierarchy_parent_id collegeofengineering
hierarchy_parent_title College of Engineering
department_str Engineering{{{_:::_}}}College of Engineering{{{_:::_}}}Engineering
url http://dx.doi.org/10.1016/j.jnnfm.2015.01.003
document_store_str 1
active_str 0
description Rheological Gel Point measurements may incur errors in the case of rapid gelling systemsdue to the limitations of multiple frequency oscillatory shear techniques such as frequency sweeps and Fourier Transform Mechanical Spectroscopy, FTMS. These limitations are associated with sample mutation and data interpolation. In the present paper we consider how an alternative rapid characterisation technique known as Optimal Fourier Rheometry, OFR, can be used to study a rapidly gelling material, namely collagen at near physiological temperatures. The OFR technique is validated using a model reference gelling system whose GP characteristics have been widely reported. An analysis of the susceptibility of OFR measurements to rheometrical artefacts is made prior to its use in study of rapid gelling collagen gels formed over a range of physiologically relevant collagen concentrations. The results of this OFR are the first measurements of the stress relaxation characteristics of collagen gels in a single rheological experiment.
published_date 2015-08-01T03:33:56Z
_version_ 1711023992354111488
score 10.81997