No Cover Image

Journal article 655 views

Ultra-thin flexible screen printed rechargeable polymer battery for wearable electronic applications / David, Gethin; Timothy, Claypole; Zari, Tehrani

Organic Electronics, Volume: 26, Pages: 386 - 394

Swansesa University Authors: David, Gethin, Timothy, Claypole, Zari, Tehrani

Full text not available from this repository: check for access using links below.

Abstract

This research has demonstrated how an ultra-thin rechargeable battery technology has been fabricated using screen printing technology. The screen printing process enabled the sequential deposition of current collector, electrode and separator/electrolyte materials onto a polyethylene terephthalate (...

Full description

Published in: Organic Electronics
ISSN: 1566-1199
Published: 2015
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa24083
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: This research has demonstrated how an ultra-thin rechargeable battery technology has been fabricated using screen printing technology. The screen printing process enabled the sequential deposition of current collector, electrode and separator/electrolyte materials onto a polyethylene terephthalate (PET) substrate in order to form both flexible and rechargeable electrodes for a battery application. The anode and cathode fabricated were based on the conducting poly (3,4-ethylenedioxythiophen): poly (styrene sulfonate) (PEDOT: PSS) and polyethyleneimine (PEI) which were combined to form the electrodes. The difference in the oxidation level between the two electrodes produced an open circuit voltage of 0.60 V and displayed a practical specific capacity of 5.5 mAh g−1. The battery developed had an active surface area of 400 mm2 and a device thickness of 440 μm. The chemistry developed during this study displayed long-term cycling potential and proves the stability of the cells for continued usage. This technology has direct uses in future personal wearable electronic devices.
College: College of Engineering
Start Page: 386
End Page: 394