Journal article 955 views 256 downloads
Thermal uncertainty quantification in frequency responses of laminated composite plates
Composites Part B: Engineering, Volume: 80, Pages: 186 - 197
Swansea University Author: Sondipon Adhikari
-
PDF | Accepted Manuscript
Download (1.51MB)
DOI (Published version): 10.1016/j.compositesb.2015.06.006
Abstract
The propagation of thermal uncertainty in composite structures has significant computational challenges. This paper presents the thermal, ply-level and material uncertainty propagation in frequency responses of laminated composite plates by employing surrogate model which is capable of dealing with...
Published in: | Composites Part B: Engineering |
---|---|
ISSN: | 1359-8368 |
Published: |
2015
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa25688 |
first_indexed |
2016-01-17T01:59:11Z |
---|---|
last_indexed |
2018-02-09T05:06:51Z |
id |
cronfa25688 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-01-08T09:55:52.9718416</datestamp><bib-version>v2</bib-version><id>25688</id><entry>2016-01-16</entry><title>Thermal uncertainty quantification in frequency responses of laminated composite plates</title><swanseaauthors><author><sid>4ea84d67c4e414f5ccbd7593a40f04d3</sid><ORCID>0000-0003-4181-3457</ORCID><firstname>Sondipon</firstname><surname>Adhikari</surname><name>Sondipon Adhikari</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-01-16</date><deptcode>ACEM</deptcode><abstract>The propagation of thermal uncertainty in composite structures has significant computational challenges. This paper presents the thermal, ply-level and material uncertainty propagation in frequency responses of laminated composite plates by employing surrogate model which is capable of dealing with both correlated and uncorrelated input parameters. The present approach introduces the generalized high dimensional model representation (GHDMR) wherein diffeomorphic modulation under observable response preserving homotopy (D-MORPH) regression is utilized to ensure the hierarchical orthogonality of high dimensional model representation component functions. The stochastic range of thermal field includes elevated temperatures up to 375 K and sub-zero temperatures up to cryogenic range of 125 K. Statistical analysis of the first three natural frequencies is presented to illustrate the results and its performance.</abstract><type>Journal Article</type><journal>Composites Part B: Engineering</journal><volume>80</volume><paginationStart>186</paginationStart><paginationEnd>197</paginationEnd><publisher/><issnPrint>1359-8368</issnPrint><keywords>Laminates, Vibration, Computational modelling, Statistical properties/methods,Thermal uncertainty</keywords><publishedDay>31</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-10-31</publishedDate><doi>10.1016/j.compositesb.2015.06.006</doi><url/><notes>@articleRID:1031151530385-209,title = Thermal uncertainty quantification in frequency responses of laminated composite plates,journal = Composites Part B-Engineering,year = 2015,author = Dey, S. and Mukhopadhyay, T. and Sahu, S. K. and Li, G. and Rabitz, H. and Adhikari, S.,volume = 80,pages = 186-197</notes><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-01-08T09:55:52.9718416</lastEdited><Created>2016-01-16T18:12:04.1521324</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>S.</firstname><surname>Dey</surname><order>1</order></author><author><firstname>T.</firstname><surname>Mukhopadhyay</surname><order>2</order></author><author><firstname>S. K.</firstname><surname>Sahu</surname><order>3</order></author><author><firstname>G.</firstname><surname>Li</surname><order>4</order></author><author><firstname>H.</firstname><surname>Rabitz</surname><order>5</order></author><author><firstname>S.</firstname><surname>Adhikari</surname><order>6</order></author><author><firstname>Sondipon</firstname><surname>Adhikari</surname><orcid>0000-0003-4181-3457</orcid><order>7</order></author></authors><documents><document><filename>0025688-11022016140833.pdf</filename><originalFilename>AdhikariThermalUncertaintyQuantification2015Postprint.pdf</originalFilename><uploaded>2016-02-11T14:08:33.4670000</uploaded><type>Output</type><contentLength>1557321</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-06-11T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-01-08T09:55:52.9718416 v2 25688 2016-01-16 Thermal uncertainty quantification in frequency responses of laminated composite plates 4ea84d67c4e414f5ccbd7593a40f04d3 0000-0003-4181-3457 Sondipon Adhikari Sondipon Adhikari true false 2016-01-16 ACEM The propagation of thermal uncertainty in composite structures has significant computational challenges. This paper presents the thermal, ply-level and material uncertainty propagation in frequency responses of laminated composite plates by employing surrogate model which is capable of dealing with both correlated and uncorrelated input parameters. The present approach introduces the generalized high dimensional model representation (GHDMR) wherein diffeomorphic modulation under observable response preserving homotopy (D-MORPH) regression is utilized to ensure the hierarchical orthogonality of high dimensional model representation component functions. The stochastic range of thermal field includes elevated temperatures up to 375 K and sub-zero temperatures up to cryogenic range of 125 K. Statistical analysis of the first three natural frequencies is presented to illustrate the results and its performance. Journal Article Composites Part B: Engineering 80 186 197 1359-8368 Laminates, Vibration, Computational modelling, Statistical properties/methods,Thermal uncertainty 31 10 2015 2015-10-31 10.1016/j.compositesb.2015.06.006 @articleRID:1031151530385-209,title = Thermal uncertainty quantification in frequency responses of laminated composite plates,journal = Composites Part B-Engineering,year = 2015,author = Dey, S. and Mukhopadhyay, T. and Sahu, S. K. and Li, G. and Rabitz, H. and Adhikari, S.,volume = 80,pages = 186-197 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2018-01-08T09:55:52.9718416 2016-01-16T18:12:04.1521324 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised S. Dey 1 T. Mukhopadhyay 2 S. K. Sahu 3 G. Li 4 H. Rabitz 5 S. Adhikari 6 Sondipon Adhikari 0000-0003-4181-3457 7 0025688-11022016140833.pdf AdhikariThermalUncertaintyQuantification2015Postprint.pdf 2016-02-11T14:08:33.4670000 Output 1557321 application/pdf Accepted Manuscript true 2016-06-11T00:00:00.0000000 true |
title |
Thermal uncertainty quantification in frequency responses of laminated composite plates |
spellingShingle |
Thermal uncertainty quantification in frequency responses of laminated composite plates Sondipon Adhikari |
title_short |
Thermal uncertainty quantification in frequency responses of laminated composite plates |
title_full |
Thermal uncertainty quantification in frequency responses of laminated composite plates |
title_fullStr |
Thermal uncertainty quantification in frequency responses of laminated composite plates |
title_full_unstemmed |
Thermal uncertainty quantification in frequency responses of laminated composite plates |
title_sort |
Thermal uncertainty quantification in frequency responses of laminated composite plates |
author_id_str_mv |
4ea84d67c4e414f5ccbd7593a40f04d3 |
author_id_fullname_str_mv |
4ea84d67c4e414f5ccbd7593a40f04d3_***_Sondipon Adhikari |
author |
Sondipon Adhikari |
author2 |
S. Dey T. Mukhopadhyay S. K. Sahu G. Li H. Rabitz S. Adhikari Sondipon Adhikari |
format |
Journal article |
container_title |
Composites Part B: Engineering |
container_volume |
80 |
container_start_page |
186 |
publishDate |
2015 |
institution |
Swansea University |
issn |
1359-8368 |
doi_str_mv |
10.1016/j.compositesb.2015.06.006 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
The propagation of thermal uncertainty in composite structures has significant computational challenges. This paper presents the thermal, ply-level and material uncertainty propagation in frequency responses of laminated composite plates by employing surrogate model which is capable of dealing with both correlated and uncorrelated input parameters. The present approach introduces the generalized high dimensional model representation (GHDMR) wherein diffeomorphic modulation under observable response preserving homotopy (D-MORPH) regression is utilized to ensure the hierarchical orthogonality of high dimensional model representation component functions. The stochastic range of thermal field includes elevated temperatures up to 375 K and sub-zero temperatures up to cryogenic range of 125 K. Statistical analysis of the first three natural frequencies is presented to illustrate the results and its performance. |
published_date |
2015-10-31T18:50:11Z |
_version_ |
1821341921519337472 |
score |
11.04748 |