No Cover Image

Journal article 321 views 163 downloads

Understanding the effect of touchdown distance and ankle joint kinematics on sprint acceleration performance through computer simulation / Neil Edward Bezodis; Grant Trewartha; Aki Ilkka Tapio Salo

Sports Biomechanics, Volume: 14, Issue: 2, Pages: 232 - 245

Swansea University Author: Bezodis, Neil

Abstract

This study determined the effects of simulated technique manipulations on early acceleration performance. A planar seven-segment angle-driven model was developed and quantitatively evaluated based on the agreement of its output to empirical data from an international-level male sprinter (100 m perso...

Full description

Published in: Sports Biomechanics
ISSN: 1476-3141 1752-6116
Published: 2015
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa26341
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: This study determined the effects of simulated technique manipulations on early acceleration performance. A planar seven-segment angle-driven model was developed and quantitatively evaluated based on the agreement of its output to empirical data from an international-level male sprinter (100 m personal best = 10.28 s). The model was then applied to independently assess the effects of manipulating touchdown distance (horizontal distance between the foot and centre of mass) and range of ankle joint dorsiflexion during early stance on horizontal external power production during stance. The model matched the empirical data with a mean difference of 5.2%. When the foot was placed progressively further forward at touchdown, horizontal power production continually reduced. When the foot was placed further back, power production initially increased (a peak increase of 0.7% occurred at 0.02 m further back) but decreased as the foot continued to touchdown further back. When the range of dorsiflexion during early stance was reduced, exponential increases in performance were observed. Increasing negative touchdown distance directs the ground reaction force more horizontally; however, a limit to the associated performance benefit exists. Reducing dorsiflexion, which required achievable increases in the peak ankle plantar flexor moment, appears potentially beneficial for improving early acceleration performance.
Item Description: First published online 23 June 2015
College: College of Engineering
Issue: 2
Start Page: 232
End Page: 245