No Cover Image

Journal article 1304 views 211 downloads

A novel mathematical formulation for predicting symmetric passive bipedal walking motion with unbalanced masses

Pooya Mahmoodi, Rajesh Ransing Orcid Logo, Michael Friswell

Applied Mathematical Modelling, Volume: 40, Issue: 5-6, Pages: 3895 - 3906

Swansea University Authors: Pooya Mahmoodi, Rajesh Ransing Orcid Logo, Michael Friswell

Abstract

Commercial prosthetic feet weigh about 25% of their equivalent physiological counterparts. The human body is able to overcome the walking asymmetry resulting from this mass imbalance by exerting more energy. It is hypothesised that the passive walking dynamics coupled with roll-over shapes has poten...

Full description

Published in: Applied Mathematical Modelling
ISSN: 0307-904X
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa26355
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2016-02-22T12:59:27Z
last_indexed 2023-01-11T13:58:17Z
id cronfa26355
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-11-15T16:19:06.5454133</datestamp><bib-version>v2</bib-version><id>26355</id><entry>2016-02-16</entry><title>A novel mathematical formulation for predicting symmetric passive bipedal walking motion with unbalanced masses</title><swanseaauthors><author><sid>8d7ce30daa6b933311ecf38cc8df8525</sid><firstname>Pooya</firstname><surname>Mahmoodi</surname><name>Pooya Mahmoodi</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>0136f9a20abec3819b54088d9647c39f</sid><ORCID>0000-0003-4848-4545</ORCID><firstname>Rajesh</firstname><surname>Ransing</surname><name>Rajesh Ransing</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>5894777b8f9c6e64bde3568d68078d40</sid><firstname>Michael</firstname><surname>Friswell</surname><name>Michael Friswell</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-02-16</date><deptcode>FGSEN</deptcode><abstract>Commercial prosthetic feet weigh about 25% of their equivalent physiological counterparts. The human body is able to overcome the walking asymmetry resulting from this mass imbalance by exerting more energy. It is hypothesised that the passive walking dynamics coupled with roll-over shapes has potential to suggest energy efficient walking solutions. A two link passive walking kinematic model has been proposed to study the gait pattern with unbalanced leg masses. An optimal roll-over shape for the prosthetic foot that minimises the asymmetry in the inter-leg angle and the step period is determined. The proposed mathematical formulation provides insights into the variation of step length and inter-leg angle with respect to the position and location of the centres for mass of both prosthetic and physiological legs.</abstract><type>Journal Article</type><journal>Applied Mathematical Modelling</journal><volume>40</volume><journalNumber>5-6</journalNumber><paginationStart>3895</paginationStart><paginationEnd>3906</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0307-904X</issnPrint><issnElectronic/><keywords>Gait analysis; Bifurcation diagrams; Phase plane limit cycle; Passive bipedal model; Transtibial amputees; Prosthetic foot</keywords><publishedDay>1</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-03-01</publishedDate><doi>10.1016/j.apm.2015.10.051</doi><url/><notes/><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-11-15T16:19:06.5454133</lastEdited><Created>2016-02-16T16:27:36.8441712</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Pooya</firstname><surname>Mahmoodi</surname><order>1</order></author><author><firstname>Rajesh</firstname><surname>Ransing</surname><orcid>0000-0003-4848-4545</orcid><order>2</order></author><author><firstname>Michael</firstname><surname>Friswell</surname><order>3</order></author></authors><documents><document><filename>0026355-16022016162856.pdf</filename><originalFilename>MahmoodiANovelMathematicalFormulation2016Postprint.pdf</originalFilename><uploaded>2016-02-16T16:28:56.1700000</uploaded><type>Output</type><contentLength>1088061</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-11-10T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>English</language></document></documents><OutputDurs/></rfc1807>
spelling 2022-11-15T16:19:06.5454133 v2 26355 2016-02-16 A novel mathematical formulation for predicting symmetric passive bipedal walking motion with unbalanced masses 8d7ce30daa6b933311ecf38cc8df8525 Pooya Mahmoodi Pooya Mahmoodi true false 0136f9a20abec3819b54088d9647c39f 0000-0003-4848-4545 Rajesh Ransing Rajesh Ransing true false 5894777b8f9c6e64bde3568d68078d40 Michael Friswell Michael Friswell true false 2016-02-16 FGSEN Commercial prosthetic feet weigh about 25% of their equivalent physiological counterparts. The human body is able to overcome the walking asymmetry resulting from this mass imbalance by exerting more energy. It is hypothesised that the passive walking dynamics coupled with roll-over shapes has potential to suggest energy efficient walking solutions. A two link passive walking kinematic model has been proposed to study the gait pattern with unbalanced leg masses. An optimal roll-over shape for the prosthetic foot that minimises the asymmetry in the inter-leg angle and the step period is determined. The proposed mathematical formulation provides insights into the variation of step length and inter-leg angle with respect to the position and location of the centres for mass of both prosthetic and physiological legs. Journal Article Applied Mathematical Modelling 40 5-6 3895 3906 0307-904X Gait analysis; Bifurcation diagrams; Phase plane limit cycle; Passive bipedal model; Transtibial amputees; Prosthetic foot 1 3 2016 2016-03-01 10.1016/j.apm.2015.10.051 COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University 2022-11-15T16:19:06.5454133 2016-02-16T16:27:36.8441712 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Pooya Mahmoodi 1 Rajesh Ransing 0000-0003-4848-4545 2 Michael Friswell 3 0026355-16022016162856.pdf MahmoodiANovelMathematicalFormulation2016Postprint.pdf 2016-02-16T16:28:56.1700000 Output 1088061 application/pdf Accepted Manuscript true 2016-11-10T00:00:00.0000000 true English
title A novel mathematical formulation for predicting symmetric passive bipedal walking motion with unbalanced masses
spellingShingle A novel mathematical formulation for predicting symmetric passive bipedal walking motion with unbalanced masses
Pooya Mahmoodi
Rajesh Ransing
Michael Friswell
title_short A novel mathematical formulation for predicting symmetric passive bipedal walking motion with unbalanced masses
title_full A novel mathematical formulation for predicting symmetric passive bipedal walking motion with unbalanced masses
title_fullStr A novel mathematical formulation for predicting symmetric passive bipedal walking motion with unbalanced masses
title_full_unstemmed A novel mathematical formulation for predicting symmetric passive bipedal walking motion with unbalanced masses
title_sort A novel mathematical formulation for predicting symmetric passive bipedal walking motion with unbalanced masses
author_id_str_mv 8d7ce30daa6b933311ecf38cc8df8525
0136f9a20abec3819b54088d9647c39f
5894777b8f9c6e64bde3568d68078d40
author_id_fullname_str_mv 8d7ce30daa6b933311ecf38cc8df8525_***_Pooya Mahmoodi
0136f9a20abec3819b54088d9647c39f_***_Rajesh Ransing
5894777b8f9c6e64bde3568d68078d40_***_Michael Friswell
author Pooya Mahmoodi
Rajesh Ransing
Michael Friswell
author2 Pooya Mahmoodi
Rajesh Ransing
Michael Friswell
format Journal article
container_title Applied Mathematical Modelling
container_volume 40
container_issue 5-6
container_start_page 3895
publishDate 2016
institution Swansea University
issn 0307-904X
doi_str_mv 10.1016/j.apm.2015.10.051
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description Commercial prosthetic feet weigh about 25% of their equivalent physiological counterparts. The human body is able to overcome the walking asymmetry resulting from this mass imbalance by exerting more energy. It is hypothesised that the passive walking dynamics coupled with roll-over shapes has potential to suggest energy efficient walking solutions. A two link passive walking kinematic model has been proposed to study the gait pattern with unbalanced leg masses. An optimal roll-over shape for the prosthetic foot that minimises the asymmetry in the inter-leg angle and the step period is determined. The proposed mathematical formulation provides insights into the variation of step length and inter-leg angle with respect to the position and location of the centres for mass of both prosthetic and physiological legs.
published_date 2016-03-01T03:31:36Z
_version_ 1763751280634757120
score 11.012678