Journal article 853 views 1093 downloads
Model Identification and Control Design for a Humanoid Robot
Wei He,
Weiliang Ge,
Yunchuan Li,
Yan-Jun Liu,
Chenguang Yang,
Changyin Sun
IEEE Transactions on Systems, Man, and Cybernetics: Systems, Volume: 47, Issue: 1, Pages: 45 - 57
Swansea University Author: Chenguang Yang
-
PDF | Accepted Manuscript
Download (901.13KB)
DOI (Published version): 10.1109/TSMC.2016.2557227
Abstract
In this paper, model identification and adaptive control design are performed on Devanit-Hartenberg model of a humanoid robot. We focus on the modeling of the 6 degree-of-freedom upper limb of the robot using recursive Newton-Euler (RNE) formula for the coordinate frame of each joint. To obtain suff...
Published in: | IEEE Transactions on Systems, Man, and Cybernetics: Systems |
---|---|
ISSN: | 2168-2216 2168-2232 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa28017 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2016-05-18T01:18:57Z |
---|---|
last_indexed |
2018-04-12T18:53:33Z |
id |
cronfa28017 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-04-12T16:10:32.5121009</datestamp><bib-version>v2</bib-version><id>28017</id><entry>2016-05-17</entry><title>Model Identification and Control Design for a Humanoid Robot</title><swanseaauthors><author><sid>d2a5024448bfac00a9b3890a8404380b</sid><ORCID/><firstname>Chenguang</firstname><surname>Yang</surname><name>Chenguang Yang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-05-17</date><deptcode>EEN</deptcode><abstract>In this paper, model identification and adaptive control design are performed on Devanit-Hartenberg model of a humanoid robot. We focus on the modeling of the 6 degree-of-freedom upper limb of the robot using recursive Newton-Euler (RNE) formula for the coordinate frame of each joint. To obtain sufficient excitation for modeling of the robot, the particle swarm optimization method has been employed to optimize the trajectory of each joint, such that satisfied parameter estimation can be obtained. In addition, the estimated inertia parameters are taken as the initial values for the RNE-based adaptive control design to achieve improved tracking performance. Simulation studies have been carried out to verify the result of the identification algorithm and to illustrate the effectiveness of the control design.</abstract><type>Journal Article</type><journal>IEEE Transactions on Systems, Man, and Cybernetics: Systems</journal><volume>47</volume><journalNumber>1</journalNumber><paginationStart>45</paginationStart><paginationEnd>57</paginationEnd><publisher/><issnPrint>2168-2216</issnPrint><issnElectronic>2168-2232</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-01-31</publishedDate><doi>10.1109/TSMC.2016.2557227</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-04-12T16:10:32.5121009</lastEdited><Created>2016-05-17T12:28:29.3066436</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Wei</firstname><surname>He</surname><order>1</order></author><author><firstname>Weiliang</firstname><surname>Ge</surname><order>2</order></author><author><firstname>Yunchuan</firstname><surname>Li</surname><order>3</order></author><author><firstname>Yan-Jun</firstname><surname>Liu</surname><order>4</order></author><author><firstname>Chenguang</firstname><surname>Yang</surname><orcid/><order>5</order></author><author><firstname>Changyin</firstname><surname>Sun</surname><order>6</order></author></authors><documents><document><filename>0028017-28062016234212.pdf</filename><originalFilename>model_identification_and_control_design-update-yang.pdf</originalFilename><uploaded>2016-06-28T23:42:12.1230000</uploaded><type>Output</type><contentLength>892093</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-06-28T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-04-12T16:10:32.5121009 v2 28017 2016-05-17 Model Identification and Control Design for a Humanoid Robot d2a5024448bfac00a9b3890a8404380b Chenguang Yang Chenguang Yang true false 2016-05-17 EEN In this paper, model identification and adaptive control design are performed on Devanit-Hartenberg model of a humanoid robot. We focus on the modeling of the 6 degree-of-freedom upper limb of the robot using recursive Newton-Euler (RNE) formula for the coordinate frame of each joint. To obtain sufficient excitation for modeling of the robot, the particle swarm optimization method has been employed to optimize the trajectory of each joint, such that satisfied parameter estimation can be obtained. In addition, the estimated inertia parameters are taken as the initial values for the RNE-based adaptive control design to achieve improved tracking performance. Simulation studies have been carried out to verify the result of the identification algorithm and to illustrate the effectiveness of the control design. Journal Article IEEE Transactions on Systems, Man, and Cybernetics: Systems 47 1 45 57 2168-2216 2168-2232 31 1 2017 2017-01-31 10.1109/TSMC.2016.2557227 COLLEGE NANME Engineering COLLEGE CODE EEN Swansea University 2018-04-12T16:10:32.5121009 2016-05-17T12:28:29.3066436 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Wei He 1 Weiliang Ge 2 Yunchuan Li 3 Yan-Jun Liu 4 Chenguang Yang 5 Changyin Sun 6 0028017-28062016234212.pdf model_identification_and_control_design-update-yang.pdf 2016-06-28T23:42:12.1230000 Output 892093 application/pdf Accepted Manuscript true 2016-06-28T00:00:00.0000000 true |
title |
Model Identification and Control Design for a Humanoid Robot |
spellingShingle |
Model Identification and Control Design for a Humanoid Robot Chenguang Yang |
title_short |
Model Identification and Control Design for a Humanoid Robot |
title_full |
Model Identification and Control Design for a Humanoid Robot |
title_fullStr |
Model Identification and Control Design for a Humanoid Robot |
title_full_unstemmed |
Model Identification and Control Design for a Humanoid Robot |
title_sort |
Model Identification and Control Design for a Humanoid Robot |
author_id_str_mv |
d2a5024448bfac00a9b3890a8404380b |
author_id_fullname_str_mv |
d2a5024448bfac00a9b3890a8404380b_***_Chenguang Yang |
author |
Chenguang Yang |
author2 |
Wei He Weiliang Ge Yunchuan Li Yan-Jun Liu Chenguang Yang Changyin Sun |
format |
Journal article |
container_title |
IEEE Transactions on Systems, Man, and Cybernetics: Systems |
container_volume |
47 |
container_issue |
1 |
container_start_page |
45 |
publishDate |
2017 |
institution |
Swansea University |
issn |
2168-2216 2168-2232 |
doi_str_mv |
10.1109/TSMC.2016.2557227 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
In this paper, model identification and adaptive control design are performed on Devanit-Hartenberg model of a humanoid robot. We focus on the modeling of the 6 degree-of-freedom upper limb of the robot using recursive Newton-Euler (RNE) formula for the coordinate frame of each joint. To obtain sufficient excitation for modeling of the robot, the particle swarm optimization method has been employed to optimize the trajectory of each joint, such that satisfied parameter estimation can be obtained. In addition, the estimated inertia parameters are taken as the initial values for the RNE-based adaptive control design to achieve improved tracking performance. Simulation studies have been carried out to verify the result of the identification algorithm and to illustrate the effectiveness of the control design. |
published_date |
2017-01-31T03:34:04Z |
_version_ |
1763751435640504320 |
score |
11.036706 |