No Cover Image

Journal article 853 views 1093 downloads

Model Identification and Control Design for a Humanoid Robot

Wei He, Weiliang Ge, Yunchuan Li, Yan-Jun Liu, Chenguang Yang, Changyin Sun

IEEE Transactions on Systems, Man, and Cybernetics: Systems, Volume: 47, Issue: 1, Pages: 45 - 57

Swansea University Author: Chenguang Yang

Abstract

In this paper, model identification and adaptive control design are performed on Devanit-Hartenberg model of a humanoid robot. We focus on the modeling of the 6 degree-of-freedom upper limb of the robot using recursive Newton-Euler (RNE) formula for the coordinate frame of each joint. To obtain suff...

Full description

Published in: IEEE Transactions on Systems, Man, and Cybernetics: Systems
ISSN: 2168-2216 2168-2232
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa28017
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2016-05-18T01:18:57Z
last_indexed 2018-04-12T18:53:33Z
id cronfa28017
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-04-12T16:10:32.5121009</datestamp><bib-version>v2</bib-version><id>28017</id><entry>2016-05-17</entry><title>Model Identification and Control Design for a Humanoid Robot</title><swanseaauthors><author><sid>d2a5024448bfac00a9b3890a8404380b</sid><ORCID/><firstname>Chenguang</firstname><surname>Yang</surname><name>Chenguang Yang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-05-17</date><deptcode>EEN</deptcode><abstract>In this paper, model identification and adaptive control design are performed on Devanit-Hartenberg model of a humanoid robot. We focus on the modeling of the 6 degree-of-freedom upper limb of the robot using recursive Newton-Euler (RNE) formula for the coordinate frame of each joint. To obtain sufficient excitation for modeling of the robot, the particle swarm optimization method has been employed to optimize the trajectory of each joint, such that satisfied parameter estimation can be obtained. In addition, the estimated inertia parameters are taken as the initial values for the RNE-based adaptive control design to achieve improved tracking performance. Simulation studies have been carried out to verify the result of the identification algorithm and to illustrate the effectiveness of the control design.</abstract><type>Journal Article</type><journal>IEEE Transactions on Systems, Man, and Cybernetics: Systems</journal><volume>47</volume><journalNumber>1</journalNumber><paginationStart>45</paginationStart><paginationEnd>57</paginationEnd><publisher/><issnPrint>2168-2216</issnPrint><issnElectronic>2168-2232</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-01-31</publishedDate><doi>10.1109/TSMC.2016.2557227</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-04-12T16:10:32.5121009</lastEdited><Created>2016-05-17T12:28:29.3066436</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Wei</firstname><surname>He</surname><order>1</order></author><author><firstname>Weiliang</firstname><surname>Ge</surname><order>2</order></author><author><firstname>Yunchuan</firstname><surname>Li</surname><order>3</order></author><author><firstname>Yan-Jun</firstname><surname>Liu</surname><order>4</order></author><author><firstname>Chenguang</firstname><surname>Yang</surname><orcid/><order>5</order></author><author><firstname>Changyin</firstname><surname>Sun</surname><order>6</order></author></authors><documents><document><filename>0028017-28062016234212.pdf</filename><originalFilename>model_identification_and_control_design-update-yang.pdf</originalFilename><uploaded>2016-06-28T23:42:12.1230000</uploaded><type>Output</type><contentLength>892093</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-06-28T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2018-04-12T16:10:32.5121009 v2 28017 2016-05-17 Model Identification and Control Design for a Humanoid Robot d2a5024448bfac00a9b3890a8404380b Chenguang Yang Chenguang Yang true false 2016-05-17 EEN In this paper, model identification and adaptive control design are performed on Devanit-Hartenberg model of a humanoid robot. We focus on the modeling of the 6 degree-of-freedom upper limb of the robot using recursive Newton-Euler (RNE) formula for the coordinate frame of each joint. To obtain sufficient excitation for modeling of the robot, the particle swarm optimization method has been employed to optimize the trajectory of each joint, such that satisfied parameter estimation can be obtained. In addition, the estimated inertia parameters are taken as the initial values for the RNE-based adaptive control design to achieve improved tracking performance. Simulation studies have been carried out to verify the result of the identification algorithm and to illustrate the effectiveness of the control design. Journal Article IEEE Transactions on Systems, Man, and Cybernetics: Systems 47 1 45 57 2168-2216 2168-2232 31 1 2017 2017-01-31 10.1109/TSMC.2016.2557227 COLLEGE NANME Engineering COLLEGE CODE EEN Swansea University 2018-04-12T16:10:32.5121009 2016-05-17T12:28:29.3066436 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Wei He 1 Weiliang Ge 2 Yunchuan Li 3 Yan-Jun Liu 4 Chenguang Yang 5 Changyin Sun 6 0028017-28062016234212.pdf model_identification_and_control_design-update-yang.pdf 2016-06-28T23:42:12.1230000 Output 892093 application/pdf Accepted Manuscript true 2016-06-28T00:00:00.0000000 true
title Model Identification and Control Design for a Humanoid Robot
spellingShingle Model Identification and Control Design for a Humanoid Robot
Chenguang Yang
title_short Model Identification and Control Design for a Humanoid Robot
title_full Model Identification and Control Design for a Humanoid Robot
title_fullStr Model Identification and Control Design for a Humanoid Robot
title_full_unstemmed Model Identification and Control Design for a Humanoid Robot
title_sort Model Identification and Control Design for a Humanoid Robot
author_id_str_mv d2a5024448bfac00a9b3890a8404380b
author_id_fullname_str_mv d2a5024448bfac00a9b3890a8404380b_***_Chenguang Yang
author Chenguang Yang
author2 Wei He
Weiliang Ge
Yunchuan Li
Yan-Jun Liu
Chenguang Yang
Changyin Sun
format Journal article
container_title IEEE Transactions on Systems, Man, and Cybernetics: Systems
container_volume 47
container_issue 1
container_start_page 45
publishDate 2017
institution Swansea University
issn 2168-2216
2168-2232
doi_str_mv 10.1109/TSMC.2016.2557227
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description In this paper, model identification and adaptive control design are performed on Devanit-Hartenberg model of a humanoid robot. We focus on the modeling of the 6 degree-of-freedom upper limb of the robot using recursive Newton-Euler (RNE) formula for the coordinate frame of each joint. To obtain sufficient excitation for modeling of the robot, the particle swarm optimization method has been employed to optimize the trajectory of each joint, such that satisfied parameter estimation can be obtained. In addition, the estimated inertia parameters are taken as the initial values for the RNE-based adaptive control design to achieve improved tracking performance. Simulation studies have been carried out to verify the result of the identification algorithm and to illustrate the effectiveness of the control design.
published_date 2017-01-31T03:34:04Z
_version_ 1763751435640504320
score 11.036706