No Cover Image

Journal article 1620 views 532 downloads

In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning

Luke Burke, Chris J. Mortimer, Daniel Curtis Orcid Logo, Aled R. Lewis, Rhodri Williams Orcid Logo, Karl Hawkins Orcid Logo, Thierry Maffeis Orcid Logo, Chris J. Wright, Christopher Wright Orcid Logo

Materials Science and Engineering: C, Volume: 70, Pages: 512 - 519

Swansea University Authors: Daniel Curtis Orcid Logo, Rhodri Williams Orcid Logo, Karl Hawkins Orcid Logo, Thierry Maffeis Orcid Logo, Christopher Wright Orcid Logo

Abstract

We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle...

Full description

Published in: Materials Science and Engineering: C
ISSN: 0928-4931
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa29839
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2016-09-08T19:08:44Z
last_indexed 2018-02-09T05:15:16Z
id cronfa29839
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2017-05-17T17:22:42.9597488</datestamp><bib-version>v2</bib-version><id>29839</id><entry>2016-09-08</entry><title>In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning</title><swanseaauthors><author><sid>e76ff28a23af2fe37099c4e9a24c1e58</sid><ORCID>0000-0002-6955-0524</ORCID><firstname>Daniel</firstname><surname>Curtis</surname><name>Daniel Curtis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>642bf793695f412ed932f1ea4d9bc3f1</sid><ORCID>0000-0002-6912-5288</ORCID><firstname>Rhodri</firstname><surname>Williams</surname><name>Rhodri Williams</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>77c39404a9a98c6e2283d84815cba053</sid><ORCID>0000-0003-0174-4151</ORCID><firstname>Karl</firstname><surname>Hawkins</surname><name>Karl Hawkins</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>992eb4cb18b61c0cd3da6e0215ac787c</sid><ORCID>0000-0003-2357-0092</ORCID><firstname>Thierry</firstname><surname>Maffeis</surname><name>Thierry Maffeis</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>235e125ac3463e2ee7fc98604bf879ce</sid><ORCID>0000-0003-2375-8159</ORCID><firstname>Christopher</firstname><surname>Wright</surname><name>Christopher Wright</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-09-08</date><deptcode>CHEG</deptcode><abstract>We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125 &#xB1; 18 nm (PEO) and 1.58 &#xB1; 0.28 &#x3BC;m (PVP); Free-surface electrospun: 155 &#xB1; 31 nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8 &#xB1; 3 nm to 27 &#xB1; 5 nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique.</abstract><type>Journal Article</type><journal>Materials Science and Engineering: C</journal><volume>70</volume><paginationStart>512</paginationStart><paginationEnd>519</paginationEnd><publisher/><issnPrint>0928-4931</issnPrint><keywords/><publishedDay>1</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-01-01</publishedDate><doi>10.1016/j.msec.2016.09.014</doi><url/><notes/><college>COLLEGE NANME</college><department>Chemical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CHEG</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-05-17T17:22:42.9597488</lastEdited><Created>2016-09-08T14:29:51.0464421</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Luke</firstname><surname>Burke</surname><order>1</order></author><author><firstname>Chris J.</firstname><surname>Mortimer</surname><order>2</order></author><author><firstname>Daniel</firstname><surname>Curtis</surname><orcid>0000-0002-6955-0524</orcid><order>3</order></author><author><firstname>Aled R.</firstname><surname>Lewis</surname><order>4</order></author><author><firstname>Rhodri</firstname><surname>Williams</surname><orcid>0000-0002-6912-5288</orcid><order>5</order></author><author><firstname>Karl</firstname><surname>Hawkins</surname><orcid>0000-0003-0174-4151</orcid><order>6</order></author><author><firstname>Thierry</firstname><surname>Maffeis</surname><orcid>0000-0003-2357-0092</orcid><order>7</order></author><author><firstname>Chris J.</firstname><surname>Wright</surname><order>8</order></author><author><firstname>Christopher</firstname><surname>Wright</surname><orcid>0000-0003-2375-8159</orcid><order>9</order></author></authors><documents><document><filename>0029839-98201623033PM.pdf</filename><originalFilename>burke2016.pdf</originalFilename><uploaded>2016-09-08T14:30:33.5570000</uploaded><type>Output</type><contentLength>1924427</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-09-07T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2017-05-17T17:22:42.9597488 v2 29839 2016-09-08 In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning e76ff28a23af2fe37099c4e9a24c1e58 0000-0002-6955-0524 Daniel Curtis Daniel Curtis true false 642bf793695f412ed932f1ea4d9bc3f1 0000-0002-6912-5288 Rhodri Williams Rhodri Williams true false 77c39404a9a98c6e2283d84815cba053 0000-0003-0174-4151 Karl Hawkins Karl Hawkins true false 992eb4cb18b61c0cd3da6e0215ac787c 0000-0003-2357-0092 Thierry Maffeis Thierry Maffeis true false 235e125ac3463e2ee7fc98604bf879ce 0000-0003-2375-8159 Christopher Wright Christopher Wright true false 2016-09-08 CHEG We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125 ± 18 nm (PEO) and 1.58 ± 0.28 μm (PVP); Free-surface electrospun: 155 ± 31 nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8 ± 3 nm to 27 ± 5 nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique. Journal Article Materials Science and Engineering: C 70 512 519 0928-4931 1 1 2017 2017-01-01 10.1016/j.msec.2016.09.014 COLLEGE NANME Chemical Engineering COLLEGE CODE CHEG Swansea University 2017-05-17T17:22:42.9597488 2016-09-08T14:29:51.0464421 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Luke Burke 1 Chris J. Mortimer 2 Daniel Curtis 0000-0002-6955-0524 3 Aled R. Lewis 4 Rhodri Williams 0000-0002-6912-5288 5 Karl Hawkins 0000-0003-0174-4151 6 Thierry Maffeis 0000-0003-2357-0092 7 Chris J. Wright 8 Christopher Wright 0000-0003-2375-8159 9 0029839-98201623033PM.pdf burke2016.pdf 2016-09-08T14:30:33.5570000 Output 1924427 application/pdf Accepted Manuscript true 2017-09-07T00:00:00.0000000 true
title In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning
spellingShingle In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning
Daniel Curtis
Rhodri Williams
Karl Hawkins
Thierry Maffeis
Christopher Wright
title_short In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning
title_full In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning
title_fullStr In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning
title_full_unstemmed In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning
title_sort In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning
author_id_str_mv e76ff28a23af2fe37099c4e9a24c1e58
642bf793695f412ed932f1ea4d9bc3f1
77c39404a9a98c6e2283d84815cba053
992eb4cb18b61c0cd3da6e0215ac787c
235e125ac3463e2ee7fc98604bf879ce
author_id_fullname_str_mv e76ff28a23af2fe37099c4e9a24c1e58_***_Daniel Curtis
642bf793695f412ed932f1ea4d9bc3f1_***_Rhodri Williams
77c39404a9a98c6e2283d84815cba053_***_Karl Hawkins
992eb4cb18b61c0cd3da6e0215ac787c_***_Thierry Maffeis
235e125ac3463e2ee7fc98604bf879ce_***_Christopher Wright
author Daniel Curtis
Rhodri Williams
Karl Hawkins
Thierry Maffeis
Christopher Wright
author2 Luke Burke
Chris J. Mortimer
Daniel Curtis
Aled R. Lewis
Rhodri Williams
Karl Hawkins
Thierry Maffeis
Chris J. Wright
Christopher Wright
format Journal article
container_title Materials Science and Engineering: C
container_volume 70
container_start_page 512
publishDate 2017
institution Swansea University
issn 0928-4931
doi_str_mv 10.1016/j.msec.2016.09.014
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering
document_store_str 1
active_str 0
description We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125 ± 18 nm (PEO) and 1.58 ± 0.28 μm (PVP); Free-surface electrospun: 155 ± 31 nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8 ± 3 nm to 27 ± 5 nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique.
published_date 2017-01-01T03:36:22Z
_version_ 1763751579811315712
score 11.016235