No Cover Image

Journal article 79 views 13 downloads

The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM / N. Sedghi; H. Li; I. F. Brunell; K. Dawson; R. J. Potter; Y. Guo; J. T. Gibbon; V. R. Dhanak; W. D. Zhang; J. F. Zhang; J. Robertson; S. Hall; P. R. Chalker

Applied Physics Letters, Volume: 110, Issue: 10, Start page: 102902

Swansea University Author: Guo, Yuzheng

  • sedghi2017.pdf

    PDF | Accepted Manuscript

    Download (1.28MB)
  • Version of Record under embargo until: 6th March 2018

Check full text

DOI (Published version): 10.1063/1.4978033

Abstract

The role of nitrogen doping on the stability and memory window of resistive state switching in N-doped Ta2O5 deposited by atomic layer deposition is elucidated. Nitrogen incorporation increases the stability of resistive memory states which is attributed to neutralization of electronic defect levels...

Full description

Published in: Applied Physics Letters
ISSN: 0003-6951 1077-3118
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa32459
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: The role of nitrogen doping on the stability and memory window of resistive state switching in N-doped Ta2O5 deposited by atomic layer deposition is elucidated. Nitrogen incorporation increases the stability of resistive memory states which is attributed to neutralization of electronic defect levels associated with oxygen vacancies. The density functional simulations with the screened exchange hybrid functional approximation show that the incorporation of nitrogen dopant atoms in the oxide network removes the O vacancy midgap defect states, thus nullifying excess defects and eliminating alternative conductive paths. By effectively reducing the density of vacancy-induced defect states through N doping, 3-bit multilevel cell switching is demonstrated, consisting of eight distinctive resistive memory states achieved by either controlling the set current compliance or the maximum voltage during reset. Nitrogen doping has a threefold effect: widening the switching memory window to accommodate the more intermediate states, improving the stability of states, and providing a gradual reset for multi-level cell switching during reset. The N-doped Ta2O5 devices have relatively small set and reset voltages (< 1 V) with reduced variability due to doping.
College: College of Engineering
Issue: 10
Start Page: 102902