No Cover Image

Journal article 932 views 211 downloads

An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor

Hyojung Cha, Jiaying Wu, Andrew Wadsworth, Jade Nagitta, Saurav Limbu, Sebastian Pont, Zhe Li Orcid Logo, Justin Searle Orcid Logo, Mark Wyatt Orcid Logo, Derya Baran, Ji-Seon Kim, Iain McCulloch, James Durrant Orcid Logo

Advanced Materials, Volume: 29, Issue: 33

Swansea University Authors: Zhe Li Orcid Logo, Justin Searle Orcid Logo, Mark Wyatt Orcid Logo, James Durrant Orcid Logo

Check full text

DOI (Published version): 10.1002/adma.201701156

Abstract

A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PffBT4T-2OD) as a donor polymer blended with either the nonfullerene acceptor E...

Full description

Published in: Advanced Materials
ISSN: 0935-9648
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa34267
first_indexed 2017-06-13T20:08:24Z
last_indexed 2021-01-15T03:53:50Z
id cronfa34267
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-01-14T12:50:26.8745059</datestamp><bib-version>v2</bib-version><id>34267</id><entry>2017-06-13</entry><title>An Efficient, &#x201C;Burn in&#x201D; Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor</title><swanseaauthors><author><sid>56be57cc8dd661dfdbb921608cf93ded</sid><ORCID>0000-0002-7404-7448</ORCID><firstname>Zhe</firstname><surname>Li</surname><name>Zhe Li</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>0e3f2c3812f181eaed11c45554d4cdd0</sid><ORCID>0000-0003-1101-075X</ORCID><firstname>Justin</firstname><surname>Searle</surname><name>Justin Searle</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7bd242b8bee1030a538b429c99913a7d</sid><ORCID>0000-0003-4107-5941</ORCID><firstname>Mark</firstname><surname>Wyatt</surname><name>Mark Wyatt</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>f3dd64bc260e5c07adfa916c27dbd58a</sid><ORCID>0000-0001-8353-7345</ORCID><firstname>James</firstname><surname>Durrant</surname><name>James Durrant</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-06-13</date><abstract>A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3&#x2032;&#x2033;-di(2-octyldodecyl)-2,2&#x2032;;5&#x2032;,2&#x2033;;5&#x2033;,2&#x2032;&#x2033;-quaterthiophen-5,5&#x2032;&#x2033;-diyl)] (PffBT4T-2OD) as a donor polymer blended with either the nonfullerene acceptor EH-IDTBR or the fullerene derivative, [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) as electron acceptors is reported. Inverted PffBT4T-2OD:EH-IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 &#xB1; 0.2%. The devices exhibit a high open circuit voltage of 1.08 &#xB1; 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH-IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T-2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T-2OD:PC71BM solar cells show significant efficiency loss under simulated solar irradiation (&#x201C;burn in&#x201D; degradation) due to the trap-assisted recombination through increased photoinduced trap states, PffBT4T-2OD:EH-IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T-2OD:EH-IDTBR solar cells are found to be substantially more stable under 85 &#xB0;C thermal stress than PffBT4T-2OD:PC71BM devices.</abstract><type>Journal Article</type><journal>Advanced Materials</journal><volume>29</volume><journalNumber>33</journalNumber><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0935-9648</issnPrint><issnElectronic/><keywords>charge separation; nonfullerene acceptors; organic solar cells; trap assisted recombination</keywords><publishedDay>1</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-09-01</publishedDate><doi>10.1002/adma.201701156</doi><url>http://dx.doi.org/10.1002/adma.201701156</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-14T12:50:26.8745059</lastEdited><Created>2017-06-13T13:26:21.4372900</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Hyojung</firstname><surname>Cha</surname><order>1</order></author><author><firstname>Jiaying</firstname><surname>Wu</surname><order>2</order></author><author><firstname>Andrew</firstname><surname>Wadsworth</surname><order>3</order></author><author><firstname>Jade</firstname><surname>Nagitta</surname><order>4</order></author><author><firstname>Saurav</firstname><surname>Limbu</surname><order>5</order></author><author><firstname>Sebastian</firstname><surname>Pont</surname><order>6</order></author><author><firstname>Zhe</firstname><surname>Li</surname><orcid>0000-0002-7404-7448</orcid><order>7</order></author><author><firstname>Justin</firstname><surname>Searle</surname><orcid>0000-0003-1101-075X</orcid><order>8</order></author><author><firstname>Mark</firstname><surname>Wyatt</surname><orcid>0000-0003-4107-5941</orcid><order>9</order></author><author><firstname>Derya</firstname><surname>Baran</surname><order>10</order></author><author><firstname>Ji-Seon</firstname><surname>Kim</surname><order>11</order></author><author><firstname>Iain</firstname><surname>McCulloch</surname><order>12</order></author><author><firstname>James</firstname><surname>Durrant</surname><orcid>0000-0001-8353-7345</orcid><order>13</order></author></authors><documents><document><filename>0034267-13062017132818.pdf</filename><originalFilename>cha2017.pdf</originalFilename><uploaded>2017-06-13T13:28:18.7900000</uploaded><type>Output</type><contentLength>3173861</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-06-28T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2021-01-14T12:50:26.8745059 v2 34267 2017-06-13 An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor 56be57cc8dd661dfdbb921608cf93ded 0000-0002-7404-7448 Zhe Li Zhe Li true false 0e3f2c3812f181eaed11c45554d4cdd0 0000-0003-1101-075X Justin Searle Justin Searle true false 7bd242b8bee1030a538b429c99913a7d 0000-0003-4107-5941 Mark Wyatt Mark Wyatt true false f3dd64bc260e5c07adfa916c27dbd58a 0000-0001-8353-7345 James Durrant James Durrant true false 2017-06-13 A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PffBT4T-2OD) as a donor polymer blended with either the nonfullerene acceptor EH-IDTBR or the fullerene derivative, [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) as electron acceptors is reported. Inverted PffBT4T-2OD:EH-IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH-IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T-2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T-2OD:PC71BM solar cells show significant efficiency loss under simulated solar irradiation (“burn in” degradation) due to the trap-assisted recombination through increased photoinduced trap states, PffBT4T-2OD:EH-IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T-2OD:EH-IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T-2OD:PC71BM devices. Journal Article Advanced Materials 29 33 0935-9648 charge separation; nonfullerene acceptors; organic solar cells; trap assisted recombination 1 9 2017 2017-09-01 10.1002/adma.201701156 http://dx.doi.org/10.1002/adma.201701156 COLLEGE NANME COLLEGE CODE Swansea University 2021-01-14T12:50:26.8745059 2017-06-13T13:26:21.4372900 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Hyojung Cha 1 Jiaying Wu 2 Andrew Wadsworth 3 Jade Nagitta 4 Saurav Limbu 5 Sebastian Pont 6 Zhe Li 0000-0002-7404-7448 7 Justin Searle 0000-0003-1101-075X 8 Mark Wyatt 0000-0003-4107-5941 9 Derya Baran 10 Ji-Seon Kim 11 Iain McCulloch 12 James Durrant 0000-0001-8353-7345 13 0034267-13062017132818.pdf cha2017.pdf 2017-06-13T13:28:18.7900000 Output 3173861 application/pdf Accepted Manuscript true 2018-06-28T00:00:00.0000000 true eng
title An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor
spellingShingle An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor
Zhe Li
Justin Searle
Mark Wyatt
James Durrant
title_short An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor
title_full An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor
title_fullStr An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor
title_full_unstemmed An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor
title_sort An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor
author_id_str_mv 56be57cc8dd661dfdbb921608cf93ded
0e3f2c3812f181eaed11c45554d4cdd0
7bd242b8bee1030a538b429c99913a7d
f3dd64bc260e5c07adfa916c27dbd58a
author_id_fullname_str_mv 56be57cc8dd661dfdbb921608cf93ded_***_Zhe Li
0e3f2c3812f181eaed11c45554d4cdd0_***_Justin Searle
7bd242b8bee1030a538b429c99913a7d_***_Mark Wyatt
f3dd64bc260e5c07adfa916c27dbd58a_***_James Durrant
author Zhe Li
Justin Searle
Mark Wyatt
James Durrant
author2 Hyojung Cha
Jiaying Wu
Andrew Wadsworth
Jade Nagitta
Saurav Limbu
Sebastian Pont
Zhe Li
Justin Searle
Mark Wyatt
Derya Baran
Ji-Seon Kim
Iain McCulloch
James Durrant
format Journal article
container_title Advanced Materials
container_volume 29
container_issue 33
publishDate 2017
institution Swansea University
issn 0935-9648
doi_str_mv 10.1002/adma.201701156
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
url http://dx.doi.org/10.1002/adma.201701156
document_store_str 1
active_str 0
description A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PffBT4T-2OD) as a donor polymer blended with either the nonfullerene acceptor EH-IDTBR or the fullerene derivative, [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) as electron acceptors is reported. Inverted PffBT4T-2OD:EH-IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH-IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T-2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T-2OD:PC71BM solar cells show significant efficiency loss under simulated solar irradiation (“burn in” degradation) due to the trap-assisted recombination through increased photoinduced trap states, PffBT4T-2OD:EH-IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T-2OD:EH-IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T-2OD:PC71BM devices.
published_date 2017-09-01T01:23:27Z
_version_ 1822000842109091840
score 11.048042