No Cover Image

Journal article 783 views 146 downloads

Formation and emission mechanisms of Ag nanoclusters in the Ar matrix assembly cluster source

Junlei Zhao, Lu Cao, Richard Palmer Orcid Logo, Kai Nordlund, Flyura Djurabekova

Physical Review Materials, Volume: 1, Issue: 6

Swansea University Author: Richard Palmer Orcid Logo

Abstract

In this paper, we study the mechanisms of growth of Ag nanoclusters in a solid Ar matrix and the emission of these nanoclusters from the matrix by a combination of experimental and theoretical methods. The molecular dynamics simulations show that the cluster growth mechanism can be described as “the...

Full description

Published in: Physical Review Materials
ISSN: 2475-9953
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa38241
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: In this paper, we study the mechanisms of growth of Ag nanoclusters in a solid Ar matrix and the emission of these nanoclusters from the matrix by a combination of experimental and theoretical methods. The molecular dynamics simulations show that the cluster growth mechanism can be described as “thermal spike-enhanced clustering” in multiple sequential ion impact events. We further show that experimentally observed large sputtered metal clusters cannot be formed by direct sputtering of Ag mixed in the Ar. Instead, we describe the mechanism of emission of the metal nanocluster that, at first, is formed in the cryogenic matrix due to multiple ion impacts, and then is emitted as a result of the simultaneous effects of interface boiling and spring force. We also develop an analytical model describing this size-dependent cluster emission. The model bridges the atomistic simulations and experimental time and length scales, and allows increasing the controllability of fast generation of nanoclusters in experiments with a high production rate.
College: Faculty of Science and Engineering
Issue: 6