No Cover Image

Journal article 689 views 100 downloads

Angular dependence of nanoparticle generation in the matrix assembly cluster source

Maria Chiara Spadaro, Junlei Zhao, William D. Terry, Jian Liu, Feng Yin, Flyura Djurabekova, Richard Palmer Orcid Logo

Nano Research, Volume: 12, Issue: 12, Pages: 3069 - 3074

Swansea University Authors: Maria Chiara Spadaro, Richard Palmer Orcid Logo

Abstract

The matrix assembly cluster source (MACS) represents a bridge between conventional instruments for cluster beam deposition (CBD) and the level of industrial production. The method is based on Ar+ ion sputtering of a pre-condensed Ar-M matrix (where M, is typically a metal such as Ag). Each Ar+ ion p...

Full description

Published in: Nano Research
ISSN: 1998-0124 1998-0000
Published: Springer Science and Business Media LLC 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa52867
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: The matrix assembly cluster source (MACS) represents a bridge between conventional instruments for cluster beam deposition (CBD) and the level of industrial production. The method is based on Ar+ ion sputtering of a pre-condensed Ar-M matrix (where M, is typically a metal such as Ag). Each Ar+ ion produces a collision cascade and thus the formation of metal clusters is in the matrix, which are then sputtered out. Here we present an experimental and computational investigation of the cluster emission process, specifically its dependence on the Ar+ ion angle of incidence and the cluster emission angle. We find the incidence angle strongly influences the emerging cluster flux, which is assigned to the spatial location of the deposited primary ion energy relative to the cluster into the matrix. We also found an approximately constant angle between the incident ion beam and the peak in the emitted cluster distribution, with value between 99° and 109°.
College: Faculty of Science and Engineering
Issue: 12
Start Page: 3069
End Page: 3074