No Cover Image

Journal article 233 views 42 downloads

Size control of Au nanoparticles from the scalable and solvent-free matrix assembly cluster source

Maria Chiara Spadaro, Lu Cao, William Terry, Richard Balog, Feng Yin, Richard Palmer Orcid Logo

Journal of Nanoparticle Research, Volume: 22, Issue: 6

Swansea University Authors: Maria Chiara Spadaro, Richard Palmer Orcid Logo

  • 54213.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution 4.0 International License (CC-BY).

    Download (2.23MB)

Abstract

Nanostructured gold is an intriguing system for heterogeneous catalysis at low temperature. Its activity is related to choice of support selection, particle-support interaction, and especially the particle size. Here, we investigate the possibility of controlling the size of Au clusters (nanoparticl...

Full description

Published in: Journal of Nanoparticle Research
ISSN: 1388-0764 1572-896X
Published: Springer Science and Business Media LLC 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa54213
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Nanostructured gold is an intriguing system for heterogeneous catalysis at low temperature. Its activity is related to choice of support selection, particle-support interaction, and especially the particle size. Here, we investigate the possibility of controlling the size of Au clusters (nanoparticles) in the novel Matrix Assembly Cluster Source (MACS), a solvent-free nanoparticle source with potential for scale-up to the gram level. The novelty of the MACS is the idea of making clusters by sputtering a pre-condensed matrix of metal atoms embedded in a condensed non-reactive gas, e.g., Ar. This concept, introduced in 2016, has already proved deposition rates several orders of magnitude higher than conventional cluster beam routes. Such scale-up in the cluster production rate is crucial for industrial research on nanocatalysis under realistic reaction condition. Here, we report a systematic study of how Au metal loading in the matrix affects the size distribution of clusters generated. Furthermore, the obtained dependence of cluster size on deposition time provides clear confirmation of cluster formation inside the matrix by ion irradiation, rather than by aggregation of atoms on the TEM support after deposition.
Keywords: Nanoparticle; solvent-free synthesis; scale-up production; cluster; gold; size-dependence; catalysis;gas phase aggregation
College: College of Engineering
Issue: 6