Journal article 946 views 175 downloads
Scale-Up of Cluster Beam Deposition to the Gram Scale with the Matrix Assembly Cluster Source for Heterogeneous Catalysis (Catalytic Ozonation of Nitrophenol in Aqueous Solution)
ACS Applied Materials & Interfaces, Volume: 12, Issue: 22, Pages: 24877 - 24882
Swansea University Authors: Rongsheng Cai , Chedly Tizaoui , Richard Palmer , Jerome Vernieres
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution License (CC-BY).
Download (3.24MB)
DOI (Published version): 10.1021/acsami.0c05955
Abstract
The deposition of precisely controlled clusters from the beam onto suitable supports represents a novel method to prepare advanced cluster-based catalysts. In principle, cluster size, composition, and morphology can be tuned or selected prior to deposition. The newly invented matrix assembly cluster...
Published in: | ACS Applied Materials & Interfaces |
---|---|
ISSN: | 1944-8244 1944-8252 |
Published: |
American Chemical Society (ACS)
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa54290 |
Abstract: |
The deposition of precisely controlled clusters from the beam onto suitable supports represents a novel method to prepare advanced cluster-based catalysts. In principle, cluster size, composition, and morphology can be tuned or selected prior to deposition. The newly invented matrix assembly cluster source (MACS) offers one solution to the long-standing problem of low cluster deposition rate. Demonstrations of the cluster activities under realistic reaction conditions are now needed. We deposited elemental silver (Ag) and gold (Au) clusters onto gram-scale powders of commercial titanium dioxide (TiO2) to investigate the catalytic oxidation of nitrophenol (a representative pollutant in water) by ozone in aqueous solution, as relevant to the removal of waste drugs from the water supply. A range of techniques, including scanning transmission electron microscopy (STEM), Brunauer–Emmett–Teller (BET) surface area test, and X-ray photoelectron spectroscopy (XPS), were employed to reveal the catalyst size, morphology, surface area, and oxidation state. Both the Ag and Au cluster catalysts proved active for the nitrophenol ozonation. The cluster catalysts showed activities at least comparable to those of catalysts made by traditional chemical methods in the literature, demonstrating the potential applications of the cluster beam deposition method for practical heterogeneous catalysis in solution. |
---|---|
Keywords: |
heterogeneous catalysis; cluster beam deposition; nitrophenol ozonation; water treatment; metal clusters; scale-up; matrix assembly cluster source (MACS); titanium dioxide powder |
College: |
Faculty of Science and Engineering |
Funders: |
UKRI, EP/K006061/2 |
Issue: |
22 |
Start Page: |
24877 |
End Page: |
24882 |