No Cover Image

Journal article 1143 views 193 downloads

Constitutive modelling of mechanically induced martensitic transformations

Daniel de Bortoli, Fauzan Adziman, Eduardo De Souza Neto Orcid Logo, Francisco M. Andrade Pires

Engineering Computations, Volume: 35, Issue: 2, Pages: 772 - 799

Swansea University Author: Eduardo De Souza Neto Orcid Logo

Abstract

PurposeThe purpose of this work is to apply a recently proposed constitutive model for mechanically induced martensitic transformations to the prediction of transformation loci. Additionally, this study aims to elucidate if a stress-assisted criterion can account for transformations in the so-called...

Full description

Published in: Engineering Computations
ISSN: 0264-4401
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa40134
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: PurposeThe purpose of this work is to apply a recently proposed constitutive model for mechanically induced martensitic transformations to the prediction of transformation loci. Additionally, this study aims to elucidate if a stress-assisted criterion can account for transformations in the so-called strain-induced regime.Design/methodology/approachThe model is derived by generalising the stress-based criterion of Patel and Cohen (1953), relying on lattice information obtained using the Phenomenological Theory of Martensite Crystallography. Transformation multipliers (cf. plastic multipliers) are introduced, from which the martensite volume fraction evolution ensues. The associated transformation functions provide a variant selection mechanism. Austenite plasticity follows a classical single crystal formulation, to account for transformations in the strain-induced regime. The resulting model is incorporated into a fully implicit RVE-based computational homogenisation finite element code.FindingsResults show good agreement with experimental data for a meta-stable austenitic stainless steel. In particular, the transformation locus is well reproduced, even in a material with considerable slip plasticity at the martensite onset, corroborating the hypothesis that an energy-based criterion can account for transformations in both stress-assisted and strain-induced regimes.Originality/valueA recently developed constitutive model for mechanically induced martensitic transformations is further assessed and validated. Its formulation is fundamentally based on a physical metallurgical mechanism and derived in a thermodynamically consistent way, inheriting a consistent mechanical dissipation. This model draws on a reduced number of phenomenological elements and is a step towards the fully predictive modelling of materials that exhibit such phenomena.
Keywords: Crystal plasticity, Computational homogenization, Martensitic transformations, Mechanically induced, Strain-induced, Stress-assisted
College: Faculty of Science and Engineering
Issue: 2
Start Page: 772
End Page: 799