Journal article 963 views
Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data
L. Jeantet,
F. Dell'Amico,
M.-A. Forin-Wiart,
M. Coutant,
M. Bonola,
D. Etienne,
J. Gresser,
S. Regis,
N. Lecerf,
F. Lefebvre,
B. de Thoisy,
Y. Le Maho,
M. Brucker,
N. Châtelain,
R. Laesser,
F. Crenner,
Y. Handrich,
R. Wilson,
D. Chevallier,
Rory Wilson
The Journal of Experimental Biology, Volume: 221, Issue: 10, Start page: jeb177378
Swansea University Author: Rory Wilson
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1242/jeb.177378
Abstract
Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data
Published in: | The Journal of Experimental Biology |
---|---|
ISSN: | 0022-0949 1477-9145 |
Published: |
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa40638 |
first_indexed |
2018-06-05T19:30:50Z |
---|---|
last_indexed |
2018-08-09T12:54:07Z |
id |
cronfa40638 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-08-09T09:03:19.0950520</datestamp><bib-version>v2</bib-version><id>40638</id><entry>2018-06-05</entry><title>Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data</title><swanseaauthors><author><sid>017bc6dd155098860945dc6249c4e9bc</sid><ORCID>0000-0003-3177-0177</ORCID><firstname>Rory</firstname><surname>Wilson</surname><name>Rory Wilson</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-06-05</date><deptcode>BGPS</deptcode><abstract/><type>Journal Article</type><journal>The Journal of Experimental Biology</journal><volume>221</volume><journalNumber>10</journalNumber><paginationStart>jeb177378</paginationStart><publisher/><issnPrint>0022-0949</issnPrint><issnElectronic>1477-9145</issnElectronic><keywords/><publishedDay>23</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-05-23</publishedDate><doi>10.1242/jeb.177378</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-08-09T09:03:19.0950520</lastEdited><Created>2018-06-05T15:29:12.8911364</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Biosciences</level></path><authors><author><firstname>L.</firstname><surname>Jeantet</surname><order>1</order></author><author><firstname>F.</firstname><surname>Dell'Amico</surname><order>2</order></author><author><firstname>M.-A.</firstname><surname>Forin-Wiart</surname><order>3</order></author><author><firstname>M.</firstname><surname>Coutant</surname><order>4</order></author><author><firstname>M.</firstname><surname>Bonola</surname><order>5</order></author><author><firstname>D.</firstname><surname>Etienne</surname><order>6</order></author><author><firstname>J.</firstname><surname>Gresser</surname><order>7</order></author><author><firstname>S.</firstname><surname>Regis</surname><order>8</order></author><author><firstname>N.</firstname><surname>Lecerf</surname><order>9</order></author><author><firstname>F.</firstname><surname>Lefebvre</surname><order>10</order></author><author><firstname>B.</firstname><surname>de Thoisy</surname><order>11</order></author><author><firstname>Y.</firstname><surname>Le Maho</surname><order>12</order></author><author><firstname>M.</firstname><surname>Brucker</surname><order>13</order></author><author><firstname>N.</firstname><surname>Châtelain</surname><order>14</order></author><author><firstname>R.</firstname><surname>Laesser</surname><order>15</order></author><author><firstname>F.</firstname><surname>Crenner</surname><order>16</order></author><author><firstname>Y.</firstname><surname>Handrich</surname><order>17</order></author><author><firstname>R.</firstname><surname>Wilson</surname><order>18</order></author><author><firstname>D.</firstname><surname>Chevallier</surname><order>19</order></author><author><firstname>Rory</firstname><surname>Wilson</surname><orcid>0000-0003-3177-0177</orcid><order>20</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2018-08-09T09:03:19.0950520 v2 40638 2018-06-05 Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data 017bc6dd155098860945dc6249c4e9bc 0000-0003-3177-0177 Rory Wilson Rory Wilson true false 2018-06-05 BGPS Journal Article The Journal of Experimental Biology 221 10 jeb177378 0022-0949 1477-9145 23 5 2018 2018-05-23 10.1242/jeb.177378 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University 2018-08-09T09:03:19.0950520 2018-06-05T15:29:12.8911364 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Biosciences L. Jeantet 1 F. Dell'Amico 2 M.-A. Forin-Wiart 3 M. Coutant 4 M. Bonola 5 D. Etienne 6 J. Gresser 7 S. Regis 8 N. Lecerf 9 F. Lefebvre 10 B. de Thoisy 11 Y. Le Maho 12 M. Brucker 13 N. Châtelain 14 R. Laesser 15 F. Crenner 16 Y. Handrich 17 R. Wilson 18 D. Chevallier 19 Rory Wilson 0000-0003-3177-0177 20 |
title |
Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data |
spellingShingle |
Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data Rory Wilson |
title_short |
Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data |
title_full |
Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data |
title_fullStr |
Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data |
title_full_unstemmed |
Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data |
title_sort |
Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data |
author_id_str_mv |
017bc6dd155098860945dc6249c4e9bc |
author_id_fullname_str_mv |
017bc6dd155098860945dc6249c4e9bc_***_Rory Wilson |
author |
Rory Wilson |
author2 |
L. Jeantet F. Dell'Amico M.-A. Forin-Wiart M. Coutant M. Bonola D. Etienne J. Gresser S. Regis N. Lecerf F. Lefebvre B. de Thoisy Y. Le Maho M. Brucker N. Châtelain R. Laesser F. Crenner Y. Handrich R. Wilson D. Chevallier Rory Wilson |
format |
Journal article |
container_title |
The Journal of Experimental Biology |
container_volume |
221 |
container_issue |
10 |
container_start_page |
jeb177378 |
publishDate |
2018 |
institution |
Swansea University |
issn |
0022-0949 1477-9145 |
doi_str_mv |
10.1242/jeb.177378 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Biosciences{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Biosciences |
document_store_str |
0 |
active_str |
0 |
published_date |
2018-05-23T04:26:49Z |
_version_ |
1821287603055362048 |
score |
11.047306 |