No Cover Image

Journal article 160 views

Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data / L. Jeantet; F. Dell'Amico; M.-A. Forin-Wiart; M. Coutant; M. Bonola; D. Etienne; J. Gresser; S. Regis; N. Lecerf; F. Lefebvre; B. de Thoisy; Y. Le Maho; M. Brucker; N. Châtelain; R. Laesser; F. Crenner; Y. Handrich; R. Wilson; D. Chevallier

The Journal of Experimental Biology, Volume: 221, Issue: 10, Start page: jeb177378

Swansea University Author: Wilson, Rory

Full text not available from this repository: check for access using links below.

Check full text

DOI (Published version): 10.1242/jeb.177378

Published in: The Journal of Experimental Biology
ISSN: 0022-0949 1477-9145
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa40638
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-06-05T19:30:50Z
last_indexed 2018-08-09T12:54:07Z
id cronfa40638
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-08-09T09:03:19Z</datestamp><bib-version>v2</bib-version><id>40638</id><entry>2018-06-05</entry><title>Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data</title><alternativeTitle></alternativeTitle><author>Rory Wilson</author><firstname>Rory</firstname><surname>Wilson</surname><active>true</active><ORCID>0000-0003-3177-0177</ORCID><ethesisStudent>false</ethesisStudent><sid>017bc6dd155098860945dc6249c4e9bc</sid><email>92ee0896422502e16d33ffe724e658fe</email><emailaddr>2U9SBJB7IztilDp3h1vD+Mjwe531u+mO/3IG3xe5jMg=</emailaddr><date>2018-06-05</date><deptcode>SBI</deptcode><abstract></abstract><type>Journal article</type><journal>The Journal of Experimental Biology</journal><volume>221</volume><journalNumber>10</journalNumber><paginationStart>jeb177378</paginationStart><paginationEnd/><publisher></publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0022-0949</issnPrint><issnElectronic>1477-9145</issnElectronic><keywords></keywords><publishedDay>23</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-05-23</publishedDate><doi>10.1242/jeb.177378</doi><url></url><notes></notes><college>College of Science</college><department>Biosciences</department><CollegeCode>CSCI</CollegeCode><DepartmentCode>SBI</DepartmentCode><institution/><researchGroup>Swansea Lab for Animal Movement</researchGroup><supervisor/><sponsorsfunders/><grantnumber/><degreelevel/><degreename>None</degreename><lastEdited>2018-08-09T09:03:19Z</lastEdited><Created>2018-06-05T15:29:12Z</Created><path><level id="1">College of Science</level><level id="2">Biosciences</level></path><authors><author><firstname>L.</firstname><surname>Jeantet</surname><orcid/><order>1</order></author><author><firstname>F.</firstname><surname>Dell'Amico</surname><orcid/><order>2</order></author><author><firstname>M.-A.</firstname><surname>Forin-Wiart</surname><orcid/><order>3</order></author><author><firstname>M.</firstname><surname>Coutant</surname><orcid/><order>4</order></author><author><firstname>M.</firstname><surname>Bonola</surname><orcid/><order>5</order></author><author><firstname>D.</firstname><surname>Etienne</surname><orcid/><order>6</order></author><author><firstname>J.</firstname><surname>Gresser</surname><orcid/><order>7</order></author><author><firstname>S.</firstname><surname>Regis</surname><orcid/><order>8</order></author><author><firstname>N.</firstname><surname>Lecerf</surname><orcid/><order>9</order></author><author><firstname>F.</firstname><surname>Lefebvre</surname><orcid/><order>10</order></author><author><firstname>B.</firstname><surname>de Thoisy</surname><orcid/><order>11</order></author><author><firstname>Y.</firstname><surname>Le Maho</surname><orcid/><order>12</order></author><author><firstname>M.</firstname><surname>Brucker</surname><orcid/><order>13</order></author><author><firstname>N.</firstname><surname>Ch&#xE2;telain</surname><orcid/><order>14</order></author><author><firstname>R.</firstname><surname>Laesser</surname><orcid/><order>15</order></author><author><firstname>F.</firstname><surname>Crenner</surname><orcid/><order>16</order></author><author><firstname>Y.</firstname><surname>Handrich</surname><orcid/><order>17</order></author><author><firstname>R.</firstname><surname>Wilson</surname><orcid/><order>18</order></author><author><firstname>D.</firstname><surname>Chevallier</surname><orcid/><order>19</order></author></authors><documents/></rfc1807>
spelling 2018-08-09T09:03:19Z v2 40638 2018-06-05 Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data Rory Wilson Rory Wilson true 0000-0003-3177-0177 false 017bc6dd155098860945dc6249c4e9bc 92ee0896422502e16d33ffe724e658fe 2U9SBJB7IztilDp3h1vD+Mjwe531u+mO/3IG3xe5jMg= 2018-06-05 SBI Journal article The Journal of Experimental Biology 221 10 jeb177378 0022-0949 1477-9145 23 5 2018 2018-05-23 10.1242/jeb.177378 College of Science Biosciences CSCI SBI Swansea Lab for Animal Movement None 2018-08-09T09:03:19Z 2018-06-05T15:29:12Z College of Science Biosciences L. Jeantet 1 F. Dell'Amico 2 M.-A. Forin-Wiart 3 M. Coutant 4 M. Bonola 5 D. Etienne 6 J. Gresser 7 S. Regis 8 N. Lecerf 9 F. Lefebvre 10 B. de Thoisy 11 Y. Le Maho 12 M. Brucker 13 N. Châtelain 14 R. Laesser 15 F. Crenner 16 Y. Handrich 17 R. Wilson 18 D. Chevallier 19
title Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data
spellingShingle Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data
Wilson, Rory
title_short Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data
title_full Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data
title_fullStr Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data
title_full_unstemmed Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data
title_sort Combined use of two supervised learning algorithms to model sea turtle behaviours from tri-axial acceleration data
author_id_str_mv 017bc6dd155098860945dc6249c4e9bc
author_id_fullname_str_mv 017bc6dd155098860945dc6249c4e9bc_***_Wilson, Rory
author Wilson, Rory
author2 L. Jeantet
F. Dell'Amico
M.-A. Forin-Wiart
M. Coutant
M. Bonola
D. Etienne
J. Gresser
S. Regis
N. Lecerf
F. Lefebvre
B. de Thoisy
Y. Le Maho
M. Brucker
N. Châtelain
R. Laesser
F. Crenner
Y. Handrich
R. Wilson
D. Chevallier
format Journal article
container_title The Journal of Experimental Biology
container_volume 221
container_issue 10
container_start_page jeb177378
publishDate 2018
institution Swansea University
issn 0022-0949
1477-9145
doi_str_mv 10.1242/jeb.177378
college_str College of Science
hierarchytype
hierarchy_top_id collegeofscience
hierarchy_top_title College of Science
hierarchy_parent_id collegeofscience
hierarchy_parent_title College of Science
department_str Biosciences{{{_:::_}}}College of Science{{{_:::_}}}Biosciences
document_store_str 0
active_str 1
researchgroup_str Swansea Lab for Animal Movement
published_date 2018-05-23T12:06:51Z
_version_ 1634048841313419264
score 11.318357