No Cover Image

Journal article 306 views 228 downloads

Thin Film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultralow Thermal Conductivity / Matthew, Burton; James, McGettrick; Jenny, Baker; Trystan, Watson; Matthew, Carnie

Advanced Materials, Volume: 30, Issue: 31, Start page: 1801357

Swansesa University Authors: Matthew, Burton, James, McGettrick, Jenny, Baker, Trystan, Watson, Matthew, Carnie

  • burton2018.pdf

    PDF | Corrected Version of Record

    © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. The copyright line for this article was changed on 1 Aug 2018 after original online publication.

    Download (1.42MB)

Check full text

DOI (Published version): 10.1002/adma.201801357

Abstract

Tin selenide (SnSe) has attracted much attention in the field of thermoelectrics since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 along the b‐axis of the material. The record ZT is attributed to an ultralow thermal conductivity that arises from anharmonicity in bonding. While it i...

Full description

Published in: Advanced Materials
ISSN: 0935-9648
Published: Wiley 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa40905
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Tin selenide (SnSe) has attracted much attention in the field of thermoelectrics since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 along the b‐axis of the material. The record ZT is attributed to an ultralow thermal conductivity that arises from anharmonicity in bonding. While it is known that nanostructuring offers the prospect of enhanced thermoelectric performance, there have been minimal studies in the literature to date of the thermoelectric performance of thin films of SnSe. In this work, preferentially orientated porous networks of thin film SnSe nanosheets are fabricated using a simple thermal evaporation method, which exhibits an unprecedentedly low thermal conductivity of 0.08 W m−1 K−1 between 375 and 450 K. In addition, the first known example of a working SnSe thermoelectric generator is presented and characterized.
Keywords: thermoelectric, tin selenide, thin film
Issue: 31
Start Page: 1801357