No Cover Image

Journal article 308 views 229 downloads

Thin Film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultralow Thermal Conductivity / Matthew, Burton; James, McGettrick; Jenny, Baker; Trystan, Watson; Matthew, Carnie

Advanced Materials, Volume: 30, Issue: 31

Swansesa University Authors: Matthew, Burton, James, McGettrick, Jenny, Baker, Trystan, Watson, Matthew, Carnie

  • burton2018.pdf

    PDF | Corrected Version of Record

    © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. The copyright line for this article was changed on 1 Aug 2018 after original online publication.

    Download (1.42MB)

Check full text

DOI (Published version): 10.1002/adma.201801357

Abstract

Tin selenide (SnSe) has attracted much attention in the field of thermoelectrics since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 along the b‐axis of the material. The record ZT is attributed to an ultralow thermal conductivity that arises from anharmonicity in bonding. While it i...

Full description

Published in: Advanced Materials
ISSN: 0935-9648
Published: Wiley 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa40905
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-07-02T19:31:09Z
last_indexed 2020-07-03T19:00:50Z
id cronfa40905
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-07-03T14:54:36.9978295</datestamp><bib-version>v2</bib-version><id>40905</id><entry>2018-07-02</entry><title>Thin Film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultralow Thermal Conductivity</title><swanseaauthors><author><sid>2deade2806e39b1f749e9cf67ac640b2</sid><ORCID>0000-0002-0376-6322</ORCID><firstname>Matthew</firstname><surname>Burton</surname><name>Matthew Burton</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>bdbacc591e2de05180e0fd3cc13fa480</sid><ORCID>0000-0002-7719-2958</ORCID><firstname>James</firstname><surname>McGettrick</surname><name>James McGettrick</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>6913b56f36f0c8cd34d8c9040d2df460</sid><ORCID>0000-0003-3530-1957</ORCID><firstname>Jenny</firstname><surname>Baker</surname><name>Jenny Baker</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>73b367694366a646b90bb15db32bb8c0</sid><ORCID>0000-0002-4232-1967</ORCID><firstname>Matthew</firstname><surname>Carnie</surname><name>Matthew Carnie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-07-02</date><deptcode>EEN</deptcode><abstract>Tin selenide (SnSe) has attracted much attention in the field of thermoelectrics since the discovery of the record figure of merit (ZT) of 2.6 &#xB1; 0.3 along the b&#x2010;axis of the material. The record ZT is attributed to an ultralow thermal conductivity that arises from anharmonicity in bonding. While it is known that nanostructuring offers the prospect of enhanced thermoelectric performance, there have been minimal studies in the literature to date of the thermoelectric performance of thin films of SnSe. In this work, preferentially orientated porous networks of thin film SnSe nanosheets are fabricated using a simple thermal evaporation method, which exhibits an unprecedentedly low thermal conductivity of 0.08 W m&#x2212;1 K&#x2212;1 between 375 and 450 K. In addition, the first known example of a working SnSe thermoelectric generator is presented and characterized.</abstract><type>Journal Article</type><journal>Advanced Materials</journal><volume>30</volume><journalNumber>31</journalNumber><publisher>Wiley</publisher><issnPrint>0935-9648</issnPrint><keywords>thermoelectric, tin selenide, thin film</keywords><publishedDay>2</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-08-02</publishedDate><doi>10.1002/adma.201801357</doi><url>http://dx.doi.org/10.1002/adma.201801357</url><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution>Swansea University</institution><sponsorsfunders>RCUK, EP/N020863/1</sponsorsfunders><lastEdited>2020-07-03T14:54:36.9978295</lastEdited><Created>2018-07-02T14:46:38.3583934</Created><authors><author><firstname>Matthew</firstname><surname>Burton</surname><orcid>0000-0002-0376-6322</orcid><order>1</order></author><author><firstname>Tianjun</firstname><surname>Liu</surname><order>2</order></author><author><firstname>James</firstname><surname>McGettrick</surname><orcid>0000-0002-7719-2958</orcid><order>3</order></author><author><firstname>Shahin</firstname><surname>Mehraban</surname><order>4</order></author><author><firstname>Jenny</firstname><surname>Baker</surname><orcid>0000-0003-3530-1957</orcid><order>5</order></author><author><firstname>Adam</firstname><surname>Pockett</surname><order>6</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>7</order></author><author><firstname>Oliver</firstname><surname>Fenwick</surname><order>8</order></author><author><firstname>Matthew</firstname><surname>Carnie</surname><orcid>0000-0002-4232-1967</orcid><order>9</order></author></authors><documents><document><filename>0040905-14082018163812.pdf</filename><originalFilename>burton2018.pdf</originalFilename><uploaded>2018-08-14T16:38:12.9800000</uploaded><type>Output</type><contentLength>1459557</contentLength><contentType>application/pdf</contentType><version>Corrected Version of Record</version><cronfaStatus>true</cronfaStatus><action/><embargoDate>2018-08-14T00:00:00.0000000</embargoDate><documentNotes>&#xA9; 2018 The Authors. Published by WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. The copyright line for this article was changed on 1 Aug 2018 after original online publication.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents></rfc1807>
spelling 2020-07-03T14:54:36.9978295 v2 40905 2018-07-02 Thin Film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultralow Thermal Conductivity 2deade2806e39b1f749e9cf67ac640b2 0000-0002-0376-6322 Matthew Burton Matthew Burton true false bdbacc591e2de05180e0fd3cc13fa480 0000-0002-7719-2958 James McGettrick James McGettrick true false 6913b56f36f0c8cd34d8c9040d2df460 0000-0003-3530-1957 Jenny Baker Jenny Baker true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 73b367694366a646b90bb15db32bb8c0 0000-0002-4232-1967 Matthew Carnie Matthew Carnie true false 2018-07-02 EEN Tin selenide (SnSe) has attracted much attention in the field of thermoelectrics since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 along the b‐axis of the material. The record ZT is attributed to an ultralow thermal conductivity that arises from anharmonicity in bonding. While it is known that nanostructuring offers the prospect of enhanced thermoelectric performance, there have been minimal studies in the literature to date of the thermoelectric performance of thin films of SnSe. In this work, preferentially orientated porous networks of thin film SnSe nanosheets are fabricated using a simple thermal evaporation method, which exhibits an unprecedentedly low thermal conductivity of 0.08 W m−1 K−1 between 375 and 450 K. In addition, the first known example of a working SnSe thermoelectric generator is presented and characterized. Journal Article Advanced Materials 30 31 Wiley 0935-9648 thermoelectric, tin selenide, thin film 2 8 2018 2018-08-02 10.1002/adma.201801357 http://dx.doi.org/10.1002/adma.201801357 COLLEGE NANME Engineering COLLEGE CODE EEN Swansea University RCUK, EP/N020863/1 2020-07-03T14:54:36.9978295 2018-07-02T14:46:38.3583934 Matthew Burton 0000-0002-0376-6322 1 Tianjun Liu 2 James McGettrick 0000-0002-7719-2958 3 Shahin Mehraban 4 Jenny Baker 0000-0003-3530-1957 5 Adam Pockett 6 Trystan Watson 0000-0002-8015-1436 7 Oliver Fenwick 8 Matthew Carnie 0000-0002-4232-1967 9 0040905-14082018163812.pdf burton2018.pdf 2018-08-14T16:38:12.9800000 Output 1459557 application/pdf Corrected Version of Record true 2018-08-14T00:00:00.0000000 © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. The copyright line for this article was changed on 1 Aug 2018 after original online publication. true eng
title Thin Film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultralow Thermal Conductivity
spellingShingle Thin Film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultralow Thermal Conductivity
Matthew, Burton
James, McGettrick
Jenny, Baker
Trystan, Watson
Matthew, Carnie
title_short Thin Film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultralow Thermal Conductivity
title_full Thin Film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultralow Thermal Conductivity
title_fullStr Thin Film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultralow Thermal Conductivity
title_full_unstemmed Thin Film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultralow Thermal Conductivity
title_sort Thin Film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultralow Thermal Conductivity
author_id_str_mv 2deade2806e39b1f749e9cf67ac640b2
bdbacc591e2de05180e0fd3cc13fa480
6913b56f36f0c8cd34d8c9040d2df460
a210327b52472cfe8df9b8108d661457
73b367694366a646b90bb15db32bb8c0
author_id_fullname_str_mv 2deade2806e39b1f749e9cf67ac640b2_***_Matthew, Burton
bdbacc591e2de05180e0fd3cc13fa480_***_James, McGettrick
6913b56f36f0c8cd34d8c9040d2df460_***_Jenny, Baker
a210327b52472cfe8df9b8108d661457_***_Trystan, Watson
73b367694366a646b90bb15db32bb8c0_***_Matthew, Carnie
author Matthew, Burton
James, McGettrick
Jenny, Baker
Trystan, Watson
Matthew, Carnie
format Journal article
container_title Advanced Materials
container_volume 30
container_issue 31
publishDate 2018
institution Swansea University
issn 0935-9648
doi_str_mv 10.1002/adma.201801357
publisher Wiley
url http://dx.doi.org/10.1002/adma.201801357
document_store_str 1
active_str 0
description Tin selenide (SnSe) has attracted much attention in the field of thermoelectrics since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 along the b‐axis of the material. The record ZT is attributed to an ultralow thermal conductivity that arises from anharmonicity in bonding. While it is known that nanostructuring offers the prospect of enhanced thermoelectric performance, there have been minimal studies in the literature to date of the thermoelectric performance of thin films of SnSe. In this work, preferentially orientated porous networks of thin film SnSe nanosheets are fabricated using a simple thermal evaporation method, which exhibits an unprecedentedly low thermal conductivity of 0.08 W m−1 K−1 between 375 and 450 K. In addition, the first known example of a working SnSe thermoelectric generator is presented and characterized.
published_date 2018-08-02T04:02:27Z
_version_ 1671797300440072192
score 10.735779