No Cover Image

E-Thesis 93 views 24 downloads

Modulators of receptor for advanced glycation end products signalling in the human endometrium. / Amy Katherine White

Swansea University Author: Amy Katherine, White

Abstract

The immunoglobulin-like, transmembrane Advanced Glycation End product (AGE) Receptor (RAGE) is a pattern recognition receptor implicated in the transduction of pro-inflammatory signalling and processes. Over the past decade a substantial body of evidence has accrued implicating RAGE in the pathogene...

Full description

Published: 2011
Institution: Swansea University
Degree level: Doctoral
Degree name: Ph.D
URI: https://cronfa.swan.ac.uk/Record/cronfa42362
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-08-02T18:54:31Z
last_indexed 2019-10-21T16:47:41Z
id cronfa42362
recordtype RisThesis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-08-29T15:43:03.9702026</datestamp><bib-version>v2</bib-version><id>42362</id><entry>2018-08-02</entry><title>Modulators of receptor for advanced glycation end products signalling in the human endometrium.</title><swanseaauthors><author><sid>e60046f19c398458cd8f91d2809ca03a</sid><ORCID>NULL</ORCID><firstname>Amy Katherine</firstname><surname>White</surname><name>Amy Katherine White</name><active>true</active><ethesisStudent>true</ethesisStudent></author></swanseaauthors><date>2018-08-02</date><abstract>The immunoglobulin-like, transmembrane Advanced Glycation End product (AGE) Receptor (RAGE) is a pattern recognition receptor implicated in the transduction of pro-inflammatory signalling and processes. Over the past decade a substantial body of evidence has accrued implicating RAGE in the pathogenesis of several chronic inflammatory and vascular diseases such as diabetes, rheumatoid arthritis, amyloidosis, atherosclerosis and renal failure. More recently RAGE has been linked to cancer progression, possibly through its role in the inflammatory process. AGE products have been shown to exert their intracellular effects through ligation of their cognate receptor RAGE and the subsequent transactivation of NFKB signalling in several cellular contexts. Polycystic Ovary Syndrome (PCOS) is a reproductive endocrine disorder characterized by hyperandrogenism, chronic anovulation and insulin resistance, thus increasing the risk of diabetes mellitus in these patients. Non-enzymatically glycated AGEs are formed at an accelerated rate and accumulate in tissues in conditions of high glucose and oxidative stress. Interestingly, young normoglycemic women with PCOS exhibit higher serum AGE levels and increased RAGE expression in poly-cystic ovaries. RAGE is also regulated through the activity of the estrogen receptor (ER). The natural cyclical expression of estrogen throughout the menstrual cycle is perturbed in endometriosis even post menopause, suggesting that RAGE could also be dysregulated. Finally PCOS has been implicated in increased risk to endometrial cancer progression as has uterine exposure to the selective estrogen receptor modulator Tamoxifen (TX) therefore it is plausible that RAGE has a function in this disease. Objectives: The principal aims of this thesis were to characterise RAGE expression for the first time in fertile and infertile endometriotic and PCO human endometrium, and to initiate RAGE characterisation in endometrium obtained from patients with endometrial hyperplasia and cancer. Secondly, this thesis endeavoured to elucidate the transcriptional mechanisms regulating RAGE in vitro response to 17beta-estradiol and AGEs which are elevated in endometriosis and PCOS pathology respectively, and in endometrial cancer. Methodology: This project employed the use of real time Polymerase Chain Reaction (RT-PCR), Chromatin Immunoprecipitation (ChIP), Immunohistochemistry (IHC) and western blotting (WB). Results: Immunohistochemistry and RT-PCR data revealed that basal RAGE expression was significantly greater in PCO and endometriotic endometrium when compared to fertile controls, and significantly elevated in two cancer patients. RAGE was also characterised in endometrial cell models in which it was shown to be modulated at the mRNA and protein level by AGE-HSA, 17beta-estradiol (E2) and its antagonist 4-hydroxytamoxifen. Moreover, we have shown that RAGE is modulated by two distinct pathways through the estrogen receptor (ER) and NFKB. Novel ChIP results confirmed the presence of p65 and ER-alpha on the RAGE promoter at non- classical Spl and Apl sites in response to AGEs, E2 and TX. Conclusions: The results in this thesis may implicate endometrial RAGE expression in the infertility evident in women with PCOS and endometriosis. Furthermore, recent evidence implicates RAGE in mediating inflammation-driven tumourigenesis. Thus, over-expression of endometrial RAGE in PCOS and endometriosis, and in patients receiving tamoxifen for breast cancer treatment may predispose these women to an elevated risk of cancer.</abstract><type>E-Thesis</type><journal/><journalNumber></journalNumber><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><issnPrint/><issnElectronic/><keywords>Molecular biology.</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2011</publishedYear><publishedDate>2011-12-31</publishedDate><doi/><url/><notes/><college>COLLEGE NANME</college><department>Swansea University Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><degreelevel>Doctoral</degreelevel><degreename>Ph.D</degreename><apcterm/><lastEdited>2018-08-29T15:43:03.9702026</lastEdited><Created>2018-08-02T16:24:28.9789956</Created><path><level id="1">Swansea University Medical School</level><level id="2">Swansea University Medical School</level></path><authors><author><firstname>Amy Katherine</firstname><surname>White</surname><orcid>NULL</orcid><order>1</order></author></authors><documents><document><filename>0042362-02082018162448.pdf</filename><originalFilename>10798070.pdf</originalFilename><uploaded>2018-08-02T16:24:48.4630000</uploaded><type>Output</type><contentLength>15044163</contentLength><contentType>application/pdf</contentType><version>E-Thesis</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-08-02T16:24:48.4630000</embargoDate><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2018-08-29T15:43:03.9702026 v2 42362 2018-08-02 Modulators of receptor for advanced glycation end products signalling in the human endometrium. e60046f19c398458cd8f91d2809ca03a NULL Amy Katherine White Amy Katherine White true true 2018-08-02 The immunoglobulin-like, transmembrane Advanced Glycation End product (AGE) Receptor (RAGE) is a pattern recognition receptor implicated in the transduction of pro-inflammatory signalling and processes. Over the past decade a substantial body of evidence has accrued implicating RAGE in the pathogenesis of several chronic inflammatory and vascular diseases such as diabetes, rheumatoid arthritis, amyloidosis, atherosclerosis and renal failure. More recently RAGE has been linked to cancer progression, possibly through its role in the inflammatory process. AGE products have been shown to exert their intracellular effects through ligation of their cognate receptor RAGE and the subsequent transactivation of NFKB signalling in several cellular contexts. Polycystic Ovary Syndrome (PCOS) is a reproductive endocrine disorder characterized by hyperandrogenism, chronic anovulation and insulin resistance, thus increasing the risk of diabetes mellitus in these patients. Non-enzymatically glycated AGEs are formed at an accelerated rate and accumulate in tissues in conditions of high glucose and oxidative stress. Interestingly, young normoglycemic women with PCOS exhibit higher serum AGE levels and increased RAGE expression in poly-cystic ovaries. RAGE is also regulated through the activity of the estrogen receptor (ER). The natural cyclical expression of estrogen throughout the menstrual cycle is perturbed in endometriosis even post menopause, suggesting that RAGE could also be dysregulated. Finally PCOS has been implicated in increased risk to endometrial cancer progression as has uterine exposure to the selective estrogen receptor modulator Tamoxifen (TX) therefore it is plausible that RAGE has a function in this disease. Objectives: The principal aims of this thesis were to characterise RAGE expression for the first time in fertile and infertile endometriotic and PCO human endometrium, and to initiate RAGE characterisation in endometrium obtained from patients with endometrial hyperplasia and cancer. Secondly, this thesis endeavoured to elucidate the transcriptional mechanisms regulating RAGE in vitro response to 17beta-estradiol and AGEs which are elevated in endometriosis and PCOS pathology respectively, and in endometrial cancer. Methodology: This project employed the use of real time Polymerase Chain Reaction (RT-PCR), Chromatin Immunoprecipitation (ChIP), Immunohistochemistry (IHC) and western blotting (WB). Results: Immunohistochemistry and RT-PCR data revealed that basal RAGE expression was significantly greater in PCO and endometriotic endometrium when compared to fertile controls, and significantly elevated in two cancer patients. RAGE was also characterised in endometrial cell models in which it was shown to be modulated at the mRNA and protein level by AGE-HSA, 17beta-estradiol (E2) and its antagonist 4-hydroxytamoxifen. Moreover, we have shown that RAGE is modulated by two distinct pathways through the estrogen receptor (ER) and NFKB. Novel ChIP results confirmed the presence of p65 and ER-alpha on the RAGE promoter at non- classical Spl and Apl sites in response to AGEs, E2 and TX. Conclusions: The results in this thesis may implicate endometrial RAGE expression in the infertility evident in women with PCOS and endometriosis. Furthermore, recent evidence implicates RAGE in mediating inflammation-driven tumourigenesis. Thus, over-expression of endometrial RAGE in PCOS and endometriosis, and in patients receiving tamoxifen for breast cancer treatment may predispose these women to an elevated risk of cancer. E-Thesis Molecular biology. 31 12 2011 2011-12-31 COLLEGE NANME Swansea University Medical School COLLEGE CODE Swansea University Doctoral Ph.D 2018-08-29T15:43:03.9702026 2018-08-02T16:24:28.9789956 Swansea University Medical School Swansea University Medical School Amy Katherine White NULL 1 0042362-02082018162448.pdf 10798070.pdf 2018-08-02T16:24:48.4630000 Output 15044163 application/pdf E-Thesis true 2018-08-02T16:24:48.4630000 false
title Modulators of receptor for advanced glycation end products signalling in the human endometrium.
spellingShingle Modulators of receptor for advanced glycation end products signalling in the human endometrium.
Amy Katherine, White
title_short Modulators of receptor for advanced glycation end products signalling in the human endometrium.
title_full Modulators of receptor for advanced glycation end products signalling in the human endometrium.
title_fullStr Modulators of receptor for advanced glycation end products signalling in the human endometrium.
title_full_unstemmed Modulators of receptor for advanced glycation end products signalling in the human endometrium.
title_sort Modulators of receptor for advanced glycation end products signalling in the human endometrium.
author_id_str_mv e60046f19c398458cd8f91d2809ca03a
author_id_fullname_str_mv e60046f19c398458cd8f91d2809ca03a_***_Amy Katherine, White_***_NULL
author Amy Katherine, White
author2 Amy Katherine White
format E-Thesis
publishDate 2011
institution Swansea University
college_str Swansea University Medical School
hierarchytype
hierarchy_top_id swanseauniversitymedicalschool
hierarchy_top_title Swansea University Medical School
hierarchy_parent_id swanseauniversitymedicalschool
hierarchy_parent_title Swansea University Medical School
department_str Swansea University Medical School{{{_:::_}}}Swansea University Medical School{{{_:::_}}}Swansea University Medical School
document_store_str 1
active_str 0
description The immunoglobulin-like, transmembrane Advanced Glycation End product (AGE) Receptor (RAGE) is a pattern recognition receptor implicated in the transduction of pro-inflammatory signalling and processes. Over the past decade a substantial body of evidence has accrued implicating RAGE in the pathogenesis of several chronic inflammatory and vascular diseases such as diabetes, rheumatoid arthritis, amyloidosis, atherosclerosis and renal failure. More recently RAGE has been linked to cancer progression, possibly through its role in the inflammatory process. AGE products have been shown to exert their intracellular effects through ligation of their cognate receptor RAGE and the subsequent transactivation of NFKB signalling in several cellular contexts. Polycystic Ovary Syndrome (PCOS) is a reproductive endocrine disorder characterized by hyperandrogenism, chronic anovulation and insulin resistance, thus increasing the risk of diabetes mellitus in these patients. Non-enzymatically glycated AGEs are formed at an accelerated rate and accumulate in tissues in conditions of high glucose and oxidative stress. Interestingly, young normoglycemic women with PCOS exhibit higher serum AGE levels and increased RAGE expression in poly-cystic ovaries. RAGE is also regulated through the activity of the estrogen receptor (ER). The natural cyclical expression of estrogen throughout the menstrual cycle is perturbed in endometriosis even post menopause, suggesting that RAGE could also be dysregulated. Finally PCOS has been implicated in increased risk to endometrial cancer progression as has uterine exposure to the selective estrogen receptor modulator Tamoxifen (TX) therefore it is plausible that RAGE has a function in this disease. Objectives: The principal aims of this thesis were to characterise RAGE expression for the first time in fertile and infertile endometriotic and PCO human endometrium, and to initiate RAGE characterisation in endometrium obtained from patients with endometrial hyperplasia and cancer. Secondly, this thesis endeavoured to elucidate the transcriptional mechanisms regulating RAGE in vitro response to 17beta-estradiol and AGEs which are elevated in endometriosis and PCOS pathology respectively, and in endometrial cancer. Methodology: This project employed the use of real time Polymerase Chain Reaction (RT-PCR), Chromatin Immunoprecipitation (ChIP), Immunohistochemistry (IHC) and western blotting (WB). Results: Immunohistochemistry and RT-PCR data revealed that basal RAGE expression was significantly greater in PCO and endometriotic endometrium when compared to fertile controls, and significantly elevated in two cancer patients. RAGE was also characterised in endometrial cell models in which it was shown to be modulated at the mRNA and protein level by AGE-HSA, 17beta-estradiol (E2) and its antagonist 4-hydroxytamoxifen. Moreover, we have shown that RAGE is modulated by two distinct pathways through the estrogen receptor (ER) and NFKB. Novel ChIP results confirmed the presence of p65 and ER-alpha on the RAGE promoter at non- classical Spl and Apl sites in response to AGEs, E2 and TX. Conclusions: The results in this thesis may implicate endometrial RAGE expression in the infertility evident in women with PCOS and endometriosis. Furthermore, recent evidence implicates RAGE in mediating inflammation-driven tumourigenesis. Thus, over-expression of endometrial RAGE in PCOS and endometriosis, and in patients receiving tamoxifen for breast cancer treatment may predispose these women to an elevated risk of cancer.
published_date 2011-12-31T04:06:55Z
_version_ 1723079238943244288
score 10.854061