No Cover Image

E-Thesis 486 views 310 downloads

An immersed computational framework for multiphase fluid-structure interaction. / Liang Yang

Swansea University Author: Liang Yang

Abstract

"The objective of this thesis is to further extend the application range of immersed computational approaches in the context of hydrodynamics and present a novel general framework for the simulation of fluid-structure interaction problems involving rigid bodies, flexible solids and multiphase f...

Full description

Published: 2015
Institution: Swansea University
Degree level: Doctoral
Degree name: Ph.D
URI: https://cronfa.swan.ac.uk/Record/cronfa42413
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-08-02T18:54:39Z
last_indexed 2018-08-03T10:10:05Z
id cronfa42413
recordtype RisThesis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-08-02T16:24:29.1661933</datestamp><bib-version>v2</bib-version><id>42413</id><entry>2018-08-02</entry><title>An immersed computational framework for multiphase fluid-structure interaction.</title><swanseaauthors><author><sid>fbe0923eef8659a33d20dd057dc4db29</sid><ORCID>NULL</ORCID><firstname>Liang</firstname><surname>Yang</surname><name>Liang Yang</name><active>true</active><ethesisStudent>true</ethesisStudent></author></swanseaauthors><date>2018-08-02</date><abstract>"The objective of this thesis is to further extend the application range of immersed computational approaches in the context of hydrodynamics and present a novel general framework for the simulation of fluid-structure interaction problems involving rigid bodies, flexible solids and multiphase flows. The proposed method aims to overcome shortcomings such as the restriction of having to deal with similar density ratios among different phases or the restriction to solve single-phase flows. The new framework will be capable of coping with large density ratios, multiphase flows and will be focussed on hydrodynamic problems. The two main challenges to be addressed are: - the representation, evolution and compatibility of the multiple fluid-solid interface - the proposition of unified framework containing multiphase flows, flexible structures and rigid bodies with possibly large density ratios First, a new variation of the original IBM is presented by rearranging the governing equations which define the behaviour of the multiple physics involved. The formulation is compatibile with the "one-fluid" equation for two phase flows and can deal with large density ratios with the help of an anisotropic Poisson solver. Second, deformable structures and fluid are modelled in a identical manner except for the deviatoric part of the Cauchy stress tensor. The challenging part is the calculation of the deviatoric part the Cauchy stress in the structure, which is expressed as a function of the deformation gradient tensor. The technique followed In this thesis is that original ISP, but re-expressed in terms of the Cauchy stress tensor. Any immersed rigid body is considered as an incompressible non-viscous continuum body with an equivalent internal force field which constrains the velocity field to satisfy the rigid body motion condition. The "rigid body" spatial velocity is evaluated by means of a linear least squares projection of the background fluid velocity, whilst the immersed force field emerges as a result of the linear momentum conversation equation. This formulation is convenient for arbitrary rigid shapes around a fixed point and the most general translation- rotation. A characteristic or indicator function, defined for each interacting continuum phase, evolves passively with the velocity field. Generally, there are two families of algorithms for the description of the interfaces, namely, Eulerian grid based methods (interface tracking). In this thesis, the interface capturing Level Set method is used to capture the fluid-fluid interface, due to its advantages to deal with possible topological changes. In addiction, an interface tracking Lagrangian based meshless technique is used for the fluid-structure interface due to its benefits at the ensuring mass preservation. From the fluid discretisation point of view, the discretisation is based on the standard Marker-and-Cell method in conjunction with a fractional step approach for the pressure/velocity decoupling. The thesis presents a wide range of applications for multiphase flows interacting with a variety of structures (i.e. rigid and deformable) Several numerical examples are presented in order to demonstrate the robustness and applicability of the new methodology. (Abstract shortened by ProQuest.)."</abstract><type>E-Thesis</type><journal/><journalNumber></journalNumber><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><issnPrint/><issnElectronic/><keywords>Computational physics.;Fluid mechanics.</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-12-31</publishedDate><doi/><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><degreelevel>Doctoral</degreelevel><degreename>Ph.D</degreename><apcterm/><lastEdited>2018-08-02T16:24:29.1661933</lastEdited><Created>2018-08-02T16:24:29.1661933</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Liang</firstname><surname>Yang</surname><orcid>NULL</orcid><order>1</order></author></authors><documents><document><filename>0042413-02082018162452.pdf</filename><originalFilename>10798121.pdf</originalFilename><uploaded>2018-08-02T16:24:52.4430000</uploaded><type>Output</type><contentLength>15349192</contentLength><contentType>application/pdf</contentType><version>E-Thesis</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-08-02T16:24:52.4430000</embargoDate><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2018-08-02T16:24:29.1661933 v2 42413 2018-08-02 An immersed computational framework for multiphase fluid-structure interaction. fbe0923eef8659a33d20dd057dc4db29 NULL Liang Yang Liang Yang true true 2018-08-02 "The objective of this thesis is to further extend the application range of immersed computational approaches in the context of hydrodynamics and present a novel general framework for the simulation of fluid-structure interaction problems involving rigid bodies, flexible solids and multiphase flows. The proposed method aims to overcome shortcomings such as the restriction of having to deal with similar density ratios among different phases or the restriction to solve single-phase flows. The new framework will be capable of coping with large density ratios, multiphase flows and will be focussed on hydrodynamic problems. The two main challenges to be addressed are: - the representation, evolution and compatibility of the multiple fluid-solid interface - the proposition of unified framework containing multiphase flows, flexible structures and rigid bodies with possibly large density ratios First, a new variation of the original IBM is presented by rearranging the governing equations which define the behaviour of the multiple physics involved. The formulation is compatibile with the "one-fluid" equation for two phase flows and can deal with large density ratios with the help of an anisotropic Poisson solver. Second, deformable structures and fluid are modelled in a identical manner except for the deviatoric part of the Cauchy stress tensor. The challenging part is the calculation of the deviatoric part the Cauchy stress in the structure, which is expressed as a function of the deformation gradient tensor. The technique followed In this thesis is that original ISP, but re-expressed in terms of the Cauchy stress tensor. Any immersed rigid body is considered as an incompressible non-viscous continuum body with an equivalent internal force field which constrains the velocity field to satisfy the rigid body motion condition. The "rigid body" spatial velocity is evaluated by means of a linear least squares projection of the background fluid velocity, whilst the immersed force field emerges as a result of the linear momentum conversation equation. This formulation is convenient for arbitrary rigid shapes around a fixed point and the most general translation- rotation. A characteristic or indicator function, defined for each interacting continuum phase, evolves passively with the velocity field. Generally, there are two families of algorithms for the description of the interfaces, namely, Eulerian grid based methods (interface tracking). In this thesis, the interface capturing Level Set method is used to capture the fluid-fluid interface, due to its advantages to deal with possible topological changes. In addiction, an interface tracking Lagrangian based meshless technique is used for the fluid-structure interface due to its benefits at the ensuring mass preservation. From the fluid discretisation point of view, the discretisation is based on the standard Marker-and-Cell method in conjunction with a fractional step approach for the pressure/velocity decoupling. The thesis presents a wide range of applications for multiphase flows interacting with a variety of structures (i.e. rigid and deformable) Several numerical examples are presented in order to demonstrate the robustness and applicability of the new methodology. (Abstract shortened by ProQuest.)." E-Thesis Computational physics.;Fluid mechanics. 31 12 2015 2015-12-31 COLLEGE NANME Engineering COLLEGE CODE Swansea University Doctoral Ph.D 2018-08-02T16:24:29.1661933 2018-08-02T16:24:29.1661933 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Liang Yang NULL 1 0042413-02082018162452.pdf 10798121.pdf 2018-08-02T16:24:52.4430000 Output 15349192 application/pdf E-Thesis true 2018-08-02T16:24:52.4430000 false
title An immersed computational framework for multiphase fluid-structure interaction.
spellingShingle An immersed computational framework for multiphase fluid-structure interaction.
Liang Yang
title_short An immersed computational framework for multiphase fluid-structure interaction.
title_full An immersed computational framework for multiphase fluid-structure interaction.
title_fullStr An immersed computational framework for multiphase fluid-structure interaction.
title_full_unstemmed An immersed computational framework for multiphase fluid-structure interaction.
title_sort An immersed computational framework for multiphase fluid-structure interaction.
author_id_str_mv fbe0923eef8659a33d20dd057dc4db29
author_id_fullname_str_mv fbe0923eef8659a33d20dd057dc4db29_***_Liang Yang
author Liang Yang
author2 Liang Yang
format E-Thesis
publishDate 2015
institution Swansea University
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description "The objective of this thesis is to further extend the application range of immersed computational approaches in the context of hydrodynamics and present a novel general framework for the simulation of fluid-structure interaction problems involving rigid bodies, flexible solids and multiphase flows. The proposed method aims to overcome shortcomings such as the restriction of having to deal with similar density ratios among different phases or the restriction to solve single-phase flows. The new framework will be capable of coping with large density ratios, multiphase flows and will be focussed on hydrodynamic problems. The two main challenges to be addressed are: - the representation, evolution and compatibility of the multiple fluid-solid interface - the proposition of unified framework containing multiphase flows, flexible structures and rigid bodies with possibly large density ratios First, a new variation of the original IBM is presented by rearranging the governing equations which define the behaviour of the multiple physics involved. The formulation is compatibile with the "one-fluid" equation for two phase flows and can deal with large density ratios with the help of an anisotropic Poisson solver. Second, deformable structures and fluid are modelled in a identical manner except for the deviatoric part of the Cauchy stress tensor. The challenging part is the calculation of the deviatoric part the Cauchy stress in the structure, which is expressed as a function of the deformation gradient tensor. The technique followed In this thesis is that original ISP, but re-expressed in terms of the Cauchy stress tensor. Any immersed rigid body is considered as an incompressible non-viscous continuum body with an equivalent internal force field which constrains the velocity field to satisfy the rigid body motion condition. The "rigid body" spatial velocity is evaluated by means of a linear least squares projection of the background fluid velocity, whilst the immersed force field emerges as a result of the linear momentum conversation equation. This formulation is convenient for arbitrary rigid shapes around a fixed point and the most general translation- rotation. A characteristic or indicator function, defined for each interacting continuum phase, evolves passively with the velocity field. Generally, there are two families of algorithms for the description of the interfaces, namely, Eulerian grid based methods (interface tracking). In this thesis, the interface capturing Level Set method is used to capture the fluid-fluid interface, due to its advantages to deal with possible topological changes. In addiction, an interface tracking Lagrangian based meshless technique is used for the fluid-structure interface due to its benefits at the ensuring mass preservation. From the fluid discretisation point of view, the discretisation is based on the standard Marker-and-Cell method in conjunction with a fractional step approach for the pressure/velocity decoupling. The thesis presents a wide range of applications for multiphase flows interacting with a variety of structures (i.e. rigid and deformable) Several numerical examples are presented in order to demonstrate the robustness and applicability of the new methodology. (Abstract shortened by ProQuest.)."
published_date 2015-12-31T03:52:55Z
_version_ 1763752621205618688
score 11.036334