No Cover Image

E-Thesis 581 views 1101 downloads

Assessment of freezing desalination technologies. / Mansour M. M Ahmad

Swansea University Author: Mansour M. M Ahmad

Abstract

The production of both fresh water and waste streams are progressively increasing over the years due to ongoing population growth coupled with high levels of increase in water consumption. The ongoing growth of human activities, such as industry, recreation, and agriculture, are significantly contri...

Full description

Published: 2012
Institution: Swansea University
Degree level: Doctoral
Degree name: Ph.D
URI: https://cronfa.swan.ac.uk/Record/cronfa42635
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-08-02T18:55:11Z
last_indexed 2018-08-03T10:10:40Z
id cronfa42635
recordtype RisThesis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-08-02T16:24:29.9306015</datestamp><bib-version>v2</bib-version><id>42635</id><entry>2018-08-02</entry><title>Assessment of freezing desalination technologies.</title><swanseaauthors><author><sid>e5e553f4218685a074513578e45bc44c</sid><ORCID>NULL</ORCID><firstname>Mansour M. M</firstname><surname>Ahmad</surname><name>Mansour M. M Ahmad</name><active>true</active><ethesisStudent>true</ethesisStudent></author></swanseaauthors><date>2018-08-02</date><abstract>The production of both fresh water and waste streams are progressively increasing over the years due to ongoing population growth coupled with high levels of increase in water consumption. The ongoing growth of human activities, such as industry, recreation, and agriculture, are significantly contributing to the increase in both water demand and severity of degradation of natural water resources. The majority of the industrial wastewaters have a significant impact on the environment; some of which may pose a number of threats to human health and the surrounding environment. Thus, discharge of such waste streams into a surface water and/or groundwater presents a major source of water pollution in many countries. Therefore, these waste streams must be disposed of in an environmentally acceptable manner. The primary concern of the PhD thesis is to seek the most feasible and applicable freezing desalination technologies that are potentially capable to concentrate the dissolved ionic content of the liquid streams, especially for those causing severe pollution problems. Therefore, various forms of melt crystallisation processes, namely; agitated and static crystallisation processes, ice maker machines, a Sulzer falling film crystallisation process, the Sulzer suspension crystallisation process, and the Sulzer static crystallisation process, were experimentally used and investigated. The experimental investigations were carried out on the laboratory bench scale and/or straightforward pilot plant by using aqueous solutions of sodium chloride and/or process brines as feed samples. The study was focused on a number of important parameters influencing the separation performance of the investigated treatment systems. In general, the resulting experimental data for each innovative process were highly encouraging in minimising the volume of the waste stream, and substantially increasing the amount of product water. The obtained product water was ready for immediate use either as drinking water or as a saline water of near brackish water or seawater qualities. Also, relationships between the influences and the separation performance, in terms of salt rejection and water recovery ratios, were explored and determined for the investigated technologies. Based on the experimental results, the Sulzer melt crystallisation processes were scaled up and were combined into a commercial reverse osmosis membrane desalination plant. As a result, three novel treatment option configurations were proposed for minimising the waste stream, whilst increasing the production rate of drinking water and/or preserving a substantial amount of natural water resource from the RO plant's exploitation.</abstract><type>E-Thesis</type><journal/><journalNumber></journalNumber><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><issnPrint/><issnElectronic/><keywords>Chemical engineering.</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2012</publishedYear><publishedDate>2012-12-31</publishedDate><doi/><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><degreelevel>Doctoral</degreelevel><degreename>Ph.D</degreename><apcterm/><lastEdited>2018-08-02T16:24:29.9306015</lastEdited><Created>2018-08-02T16:24:29.9306015</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Mansour M. M</firstname><surname>Ahmad</surname><orcid>NULL</orcid><order>1</order></author></authors><documents><document><filename>0042635-02082018162509.pdf</filename><originalFilename>10805411.pdf</originalFilename><uploaded>2018-08-02T16:25:09.9930000</uploaded><type>Output</type><contentLength>23573799</contentLength><contentType>application/pdf</contentType><version>E-Thesis</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-08-02T16:25:09.9930000</embargoDate><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2018-08-02T16:24:29.9306015 v2 42635 2018-08-02 Assessment of freezing desalination technologies. e5e553f4218685a074513578e45bc44c NULL Mansour M. M Ahmad Mansour M. M Ahmad true true 2018-08-02 The production of both fresh water and waste streams are progressively increasing over the years due to ongoing population growth coupled with high levels of increase in water consumption. The ongoing growth of human activities, such as industry, recreation, and agriculture, are significantly contributing to the increase in both water demand and severity of degradation of natural water resources. The majority of the industrial wastewaters have a significant impact on the environment; some of which may pose a number of threats to human health and the surrounding environment. Thus, discharge of such waste streams into a surface water and/or groundwater presents a major source of water pollution in many countries. Therefore, these waste streams must be disposed of in an environmentally acceptable manner. The primary concern of the PhD thesis is to seek the most feasible and applicable freezing desalination technologies that are potentially capable to concentrate the dissolved ionic content of the liquid streams, especially for those causing severe pollution problems. Therefore, various forms of melt crystallisation processes, namely; agitated and static crystallisation processes, ice maker machines, a Sulzer falling film crystallisation process, the Sulzer suspension crystallisation process, and the Sulzer static crystallisation process, were experimentally used and investigated. The experimental investigations were carried out on the laboratory bench scale and/or straightforward pilot plant by using aqueous solutions of sodium chloride and/or process brines as feed samples. The study was focused on a number of important parameters influencing the separation performance of the investigated treatment systems. In general, the resulting experimental data for each innovative process were highly encouraging in minimising the volume of the waste stream, and substantially increasing the amount of product water. The obtained product water was ready for immediate use either as drinking water or as a saline water of near brackish water or seawater qualities. Also, relationships between the influences and the separation performance, in terms of salt rejection and water recovery ratios, were explored and determined for the investigated technologies. Based on the experimental results, the Sulzer melt crystallisation processes were scaled up and were combined into a commercial reverse osmosis membrane desalination plant. As a result, three novel treatment option configurations were proposed for minimising the waste stream, whilst increasing the production rate of drinking water and/or preserving a substantial amount of natural water resource from the RO plant's exploitation. E-Thesis Chemical engineering. 31 12 2012 2012-12-31 COLLEGE NANME Engineering COLLEGE CODE Swansea University Doctoral Ph.D 2018-08-02T16:24:29.9306015 2018-08-02T16:24:29.9306015 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Mansour M. M Ahmad NULL 1 0042635-02082018162509.pdf 10805411.pdf 2018-08-02T16:25:09.9930000 Output 23573799 application/pdf E-Thesis true 2018-08-02T16:25:09.9930000 false
title Assessment of freezing desalination technologies.
spellingShingle Assessment of freezing desalination technologies.
Mansour M. M Ahmad
title_short Assessment of freezing desalination technologies.
title_full Assessment of freezing desalination technologies.
title_fullStr Assessment of freezing desalination technologies.
title_full_unstemmed Assessment of freezing desalination technologies.
title_sort Assessment of freezing desalination technologies.
author_id_str_mv e5e553f4218685a074513578e45bc44c
author_id_fullname_str_mv e5e553f4218685a074513578e45bc44c_***_Mansour M. M Ahmad
author Mansour M. M Ahmad
author2 Mansour M. M Ahmad
format E-Thesis
publishDate 2012
institution Swansea University
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description The production of both fresh water and waste streams are progressively increasing over the years due to ongoing population growth coupled with high levels of increase in water consumption. The ongoing growth of human activities, such as industry, recreation, and agriculture, are significantly contributing to the increase in both water demand and severity of degradation of natural water resources. The majority of the industrial wastewaters have a significant impact on the environment; some of which may pose a number of threats to human health and the surrounding environment. Thus, discharge of such waste streams into a surface water and/or groundwater presents a major source of water pollution in many countries. Therefore, these waste streams must be disposed of in an environmentally acceptable manner. The primary concern of the PhD thesis is to seek the most feasible and applicable freezing desalination technologies that are potentially capable to concentrate the dissolved ionic content of the liquid streams, especially for those causing severe pollution problems. Therefore, various forms of melt crystallisation processes, namely; agitated and static crystallisation processes, ice maker machines, a Sulzer falling film crystallisation process, the Sulzer suspension crystallisation process, and the Sulzer static crystallisation process, were experimentally used and investigated. The experimental investigations were carried out on the laboratory bench scale and/or straightforward pilot plant by using aqueous solutions of sodium chloride and/or process brines as feed samples. The study was focused on a number of important parameters influencing the separation performance of the investigated treatment systems. In general, the resulting experimental data for each innovative process were highly encouraging in minimising the volume of the waste stream, and substantially increasing the amount of product water. The obtained product water was ready for immediate use either as drinking water or as a saline water of near brackish water or seawater qualities. Also, relationships between the influences and the separation performance, in terms of salt rejection and water recovery ratios, were explored and determined for the investigated technologies. Based on the experimental results, the Sulzer melt crystallisation processes were scaled up and were combined into a commercial reverse osmosis membrane desalination plant. As a result, three novel treatment option configurations were proposed for minimising the waste stream, whilst increasing the production rate of drinking water and/or preserving a substantial amount of natural water resource from the RO plant's exploitation.
published_date 2012-12-31T03:53:21Z
_version_ 1763752648515780608
score 11.016235