Journal article 960 views 164 downloads
Gradient Estimates on Dirichlet and Neumann Eigenfunctions
International Mathematics Research Notices
Swansea University Author: Feng-yu Wang
-
PDF | Accepted Manuscript
Download (311.15KB)
DOI (Published version): 10.1093/imrn/rny208
Abstract
By methods of stochastic analysis on Riemannian manifolds, we derive explicit constants $c_1(D)$ and $c_2(D)$ for a $d$-dimensional compact Riemannian manifold $D$ with boundary such that $$c_1(D)\ss\lambda \|\phi\|_\infty\le \|\nabla \phi\|_\infty \le c_2(D) \sqrt\lambda\|\phi\|_\infty$$ holds for...
Published in: | International Mathematics Research Notices |
---|---|
ISSN: | 1073-7928 1687-0247 |
Published: |
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa43217 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2018-08-04T03:57:49Z |
---|---|
last_indexed |
2018-11-26T20:15:28Z |
id |
cronfa43217 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-11-26T14:31:06.2302382</datestamp><bib-version>v2</bib-version><id>43217</id><entry>2018-08-04</entry><title>Gradient Estimates on Dirichlet and Neumann Eigenfunctions</title><swanseaauthors><author><sid>6734caa6d9a388bd3bd8eb0a1131d0de</sid><ORCID>0000-0003-0950-1672</ORCID><firstname>Feng-yu</firstname><surname>Wang</surname><name>Feng-yu Wang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-08-04</date><deptcode>SMA</deptcode><abstract>By methods of stochastic analysis on Riemannian manifolds, we derive explicit constants $c_1(D)$ and $c_2(D)$ for a $d$-dimensional compact Riemannian manifold $D$ with boundary such that $$c_1(D)\ss\lambda \|\phi\|_\infty\le \|\nabla \phi\|_\infty \le c_2(D) \sqrt\lambda\|\phi\|_\infty$$ holds for any Dirichlet eigenfunction $\phi$ of $-\DD$ with eigenvalue $\lambda$. In particular, when $D$ is convex with non-negative Ricci curvature, the estimate holds for $$c_1(D)= \frac 1{de},\quad c_2(D)=\sqrt{e}\left(\frac{\sqrt{2}}{\sqrt{\pi}}+\frac{\sqrt{\pi}}{4\sqrt{2}}\right).$$ Corresponding two-sided gradient estimates for Neumann eigenfunctions are derived in the second part of the paper.</abstract><type>Journal Article</type><journal>International Mathematics Research Notices</journal><publisher/><issnPrint>1073-7928</issnPrint><issnElectronic>1687-0247</issnElectronic><keywords/><publishedDay>4</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-09-04</publishedDate><doi>10.1093/imrn/rny208</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-11-26T14:31:06.2302382</lastEdited><Created>2018-08-04T01:19:21.0100009</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Marc</firstname><surname>Arnaudon</surname><order>1</order></author><author><firstname>Anton</firstname><surname>Thalmaier</surname><order>2</order></author><author><firstname>Feng-yu</firstname><surname>Wang</surname><orcid>0000-0003-0950-1672</orcid><order>3</order></author></authors><documents><document><filename>0043217-04082018012052.pdf</filename><originalFilename>18ATW.pdf</originalFilename><uploaded>2018-08-04T01:20:52.0070000</uploaded><type>Output</type><contentLength>293406</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-09-04T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-11-26T14:31:06.2302382 v2 43217 2018-08-04 Gradient Estimates on Dirichlet and Neumann Eigenfunctions 6734caa6d9a388bd3bd8eb0a1131d0de 0000-0003-0950-1672 Feng-yu Wang Feng-yu Wang true false 2018-08-04 SMA By methods of stochastic analysis on Riemannian manifolds, we derive explicit constants $c_1(D)$ and $c_2(D)$ for a $d$-dimensional compact Riemannian manifold $D$ with boundary such that $$c_1(D)\ss\lambda \|\phi\|_\infty\le \|\nabla \phi\|_\infty \le c_2(D) \sqrt\lambda\|\phi\|_\infty$$ holds for any Dirichlet eigenfunction $\phi$ of $-\DD$ with eigenvalue $\lambda$. In particular, when $D$ is convex with non-negative Ricci curvature, the estimate holds for $$c_1(D)= \frac 1{de},\quad c_2(D)=\sqrt{e}\left(\frac{\sqrt{2}}{\sqrt{\pi}}+\frac{\sqrt{\pi}}{4\sqrt{2}}\right).$$ Corresponding two-sided gradient estimates for Neumann eigenfunctions are derived in the second part of the paper. Journal Article International Mathematics Research Notices 1073-7928 1687-0247 4 9 2018 2018-09-04 10.1093/imrn/rny208 COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University 2018-11-26T14:31:06.2302382 2018-08-04T01:19:21.0100009 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Marc Arnaudon 1 Anton Thalmaier 2 Feng-yu Wang 0000-0003-0950-1672 3 0043217-04082018012052.pdf 18ATW.pdf 2018-08-04T01:20:52.0070000 Output 293406 application/pdf Accepted Manuscript true 2019-09-04T00:00:00.0000000 true eng |
title |
Gradient Estimates on Dirichlet and Neumann Eigenfunctions |
spellingShingle |
Gradient Estimates on Dirichlet and Neumann Eigenfunctions Feng-yu Wang |
title_short |
Gradient Estimates on Dirichlet and Neumann Eigenfunctions |
title_full |
Gradient Estimates on Dirichlet and Neumann Eigenfunctions |
title_fullStr |
Gradient Estimates on Dirichlet and Neumann Eigenfunctions |
title_full_unstemmed |
Gradient Estimates on Dirichlet and Neumann Eigenfunctions |
title_sort |
Gradient Estimates on Dirichlet and Neumann Eigenfunctions |
author_id_str_mv |
6734caa6d9a388bd3bd8eb0a1131d0de |
author_id_fullname_str_mv |
6734caa6d9a388bd3bd8eb0a1131d0de_***_Feng-yu Wang |
author |
Feng-yu Wang |
author2 |
Marc Arnaudon Anton Thalmaier Feng-yu Wang |
format |
Journal article |
container_title |
International Mathematics Research Notices |
publishDate |
2018 |
institution |
Swansea University |
issn |
1073-7928 1687-0247 |
doi_str_mv |
10.1093/imrn/rny208 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
By methods of stochastic analysis on Riemannian manifolds, we derive explicit constants $c_1(D)$ and $c_2(D)$ for a $d$-dimensional compact Riemannian manifold $D$ with boundary such that $$c_1(D)\ss\lambda \|\phi\|_\infty\le \|\nabla \phi\|_\infty \le c_2(D) \sqrt\lambda\|\phi\|_\infty$$ holds for any Dirichlet eigenfunction $\phi$ of $-\DD$ with eigenvalue $\lambda$. In particular, when $D$ is convex with non-negative Ricci curvature, the estimate holds for $$c_1(D)= \frac 1{de},\quad c_2(D)=\sqrt{e}\left(\frac{\sqrt{2}}{\sqrt{\pi}}+\frac{\sqrt{\pi}}{4\sqrt{2}}\right).$$ Corresponding two-sided gradient estimates for Neumann eigenfunctions are derived in the second part of the paper. |
published_date |
2018-09-04T03:54:29Z |
_version_ |
1763752719530590208 |
score |
11.035634 |