No Cover Image

Journal article 1466 views 858 downloads

Descriptive conversion of performance indicators in rugby union

Mark Bennett, Neil Bezodis Orcid Logo, David A. Shearer, Duncan Locke, Liam Kilduff Orcid Logo

Journal of Science and Medicine in Sport, Volume: 22, Issue: 3, Pages: 330 - 334

Swansea University Authors: Neil Bezodis Orcid Logo, Liam Kilduff Orcid Logo

Abstract

ObjectivesThe primary aim of this study was to examine whether accuracy of rugby union match prediction outcomes differed dependent on the method of data analysis (i.e., isolated vs. descriptively converted or relative data). A secondary aim was to then use the most appropriate method to investigate...

Full description

Published in: Journal of Science and Medicine in Sport
ISSN: 1440-2440
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa43255
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: ObjectivesThe primary aim of this study was to examine whether accuracy of rugby union match prediction outcomes differed dependent on the method of data analysis (i.e., isolated vs. descriptively converted or relative data). A secondary aim was to then use the most appropriate method to investigate the performance indicators (PI’s) most relevant to match outcome.MethodsData was 16 PI’s from 127 matches across the 2016–17 English Premiership rugby season. Given the binary outcome (win/lose), a random forest classification model was built using these data sets. Predictive ability of the models was further assessed by predicting outcomes from data sets of 72 matches across the 2017–18 season.ResultsThe relative data model attained a balanced prediction rate of 80% (95% CI – 75–85%) for 2016–17 data, whereas the isolated data model only achieved 64% (95% CI – 58–70%). In addition, the relative data model correctly predicted 76% (95% CI – 68–84%) of the 2017–18 data, compared with 70% (95% CI – 63–77%) for the isolated data model. From the relative data model, 10 PI’s had significant relationships with game outcome; kicks from hand, clean breaks, average carry distance, penalties conceded when the opposition have the ball, turnovers conceded, total metres carried, defenders beaten, ratio of tackles missed to tackles made, total missed tackles, and turnovers won.ConclusionsOutcomes of Premiership rugby matches are better predicted when relative data sets are utilised. Basic open-field abilities based around an effective kicking game, ball carrying abilities, and not conceding penalties when the opposition are in possession are the most relevant predictors of success.
Keywords: Team sport, Random forest, Performance indicators, Partial dependence plots
College: Faculty of Science and Engineering
Issue: 3
Start Page: 330
End Page: 334