Journal article 954 views 180 downloads
Protein-Corona-by-Design in 2D: A Reliable Platform to Decode Bio-Nano Interactions for the Next-Generation Quality-by-Design Nanomedicines
Advanced Materials, Volume: 30, Issue: 40, Start page: 1802732
Swansea University Authors: Huw Summers , Justyna Piasecka
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution License (CC-BY).
Download (2.46MB)
DOI (Published version): 10.1002/adma.201802732
Abstract
Hard corona (HC) protein, i.e., the environmental proteins of the biological medium that are bound to a nanosurface, is known to affect the biological fate of a nanomedicine. Due to the size, curvature, and specific surface area (SSA) 3‐factor interactions inherited in the traditional 3D nanoparticl...
Published in: | Advanced Materials |
---|---|
ISSN: | 0935-9648 |
Published: |
Wiley
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa43705 |
Abstract: |
Hard corona (HC) protein, i.e., the environmental proteins of the biological medium that are bound to a nanosurface, is known to affect the biological fate of a nanomedicine. Due to the size, curvature, and specific surface area (SSA) 3‐factor interactions inherited in the traditional 3D nanoparticle, HC‐dependent bio–nano interactions are often poorly probed and interpreted. Here, the first HC‐by‐design case study in 2D is demonstrated that sequentially and linearly changes the HC quantity using functionalized graphene oxide (GO) nanosheets. The HC quantity and HC quality are analyzed using NanoDrop and label‐free liquid chromatography–mass spectrometry (LC‐MS) followed by principal component analysis (PCA). Cellular responses (uptake and cytotoxicity in J774 cell model) are compared using imaging cytometry and the modified lactate dehydrogenase assays, respectively. Cellular uptake linearly and solely correlates with HC quantity (R2 = 0.99634). The nanotoxicity, analyzed by retrospective design of experiment (DoE), is found to be dependent on the nanomaterial uptake (primary), HC composition (secondary), and nanomaterial exposure dose (tertiary). This unique 2D design eliminates the size–curvature–SSA multifactor interactions and can serve as a reliable screening platform to uncover HC‐dependent bio–nano interactions to enable the next‐generation quality‐by‐design (QbD) nanomedicines for better clinical translation. |
---|---|
Item Description: |
This inter-disciplinary paper addresses the critical issue in nano-biotechnology of the protein corona that surrounds nanoparticles. It presents the first engineered approach to control the corona using graphene materials. The importance of the Swansea contribution was in the provision of detailed, quantitative analysis of nanoparticle decoration of cells using imaging cytometry. This was crucial in allowing interpretation of dimensionless PCA scores into meaningful biological function using correlation studies, based on the imaging technology. |
Issue: |
40 |
Start Page: |
1802732 |