No Cover Image

Journal article 578 views 117 downloads

Short-term tissue decomposition alters stable isotope values and C:N ratio, but does not change relationships between lipid content, C:N ratio, and Δδ13C in marine animals

Matthew Perkins, Yanny K. Y. Mak, Lily S. R. Tao, Archer T. L. Wong, Jason K. C. Yau, David M. Baker, Kenneth M. Y. Leung

PLOS ONE, Volume: 13, Issue: 7, Start page: e0199680

Swansea University Author: Matthew Perkins

  • 44822.pdf

    PDF | Version of Record

    This is an open access article distributed under the terms of the Creative Commons Attribution License.

    Download (3.43MB)

Abstract

Measures (e.g. δ15N, δ13C, %C, %N and C:N) derived from animal tissues are commonlyused to estimate diets and trophic interactions. Since tissue samples are often exposed toair or kept chilled in ice over a short-term during sample preparation, they may degrade.Herein, we hypothesize that tissue dec...

Full description

Published in: PLOS ONE
ISSN: 1932-6203
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa44822
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Measures (e.g. δ15N, δ13C, %C, %N and C:N) derived from animal tissues are commonlyused to estimate diets and trophic interactions. Since tissue samples are often exposed toair or kept chilled in ice over a short-term during sample preparation, they may degrade.Herein, we hypothesize that tissue decomposition will cause changes in these measures. Inthis study, we kept marine fish, crustacean and mollusc tissues in air or ice over 120 h (5days). We found that tissue decomposition in air enriched δ15N (range 0.6½ to 1.3½) andδ13C (0.2½ to 0.4½), decreased %N (0.47 to 3.43 percentage points from staring values of~13%) and %C (4.53 to 8.29 percentage points from starting values of ~43%), and subsequentlyincreased C:N ratio (0.14 to 0.75). In air, while such changes to δ13C were relativelyminor and therefore likely tolerable, changes in δ15N, %N, %C and C:N ratio should be interpretedwith caution. Ice effectively reduced the extent to which decomposition enrichedδ15N ( 0.4½) and δ13C ( 0.2½), and eliminated decomposition in C:N ratio, %N and %C.In our second experiment, for fish tissues in either air or ice over 120 h, we observed noeffects of decomposition on relationships between lipid content, C:N ratio, and Δδ13C(change in δ13C after lipid removal), which are employed to correct δ13C for samples containinglipid. We also confirmed that lipid in tissues caused large errors when estimatingδ13C (mean ± standard error = -1.8½ ± 0.1½, range -0.6½ to -3.8½), and showed both lipidextraction and mathematical correction performed equally well to correct for lipids when estimatingδ13C. We, therefore, recommend that specimens of marine animals should be keptin ice during sample preparation for a short-term, as it is an effective means for minimizingchanges of the stable isotope measures in their tissue.
College: Faculty of Science and Engineering
Issue: 7
Start Page: e0199680