No Cover Image

Journal article 888 views 353 downloads

Excitation Density Dependent Photoluminescence Quenching and Charge Transfer Efficiencies in Hybrid Perovskite/Organic Semiconductor Bilayers

Jinhyun Kim, Robert Godin, Stoichko Dimitrov Orcid Logo, Tian Du, Daniel Bryant, Martyn A. McLachlan, James Durrant Orcid Logo

Advanced Energy Materials, Start page: 1802474

Swansea University Authors: Stoichko Dimitrov Orcid Logo, James Durrant Orcid Logo

Check full text

DOI (Published version): 10.1002/aenm.201802474

Abstract

This study addresses the dependence of charge transfer efficiency between bilayers of methylammonium lead iodide (MAPI3) with PC61BM or poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) charge transfer layers on excitation intensity. It analyzes the kinetic competition between inte...

Full description

Published in: Advanced Energy Materials
ISSN: 1614-6832
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa45502
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: This study addresses the dependence of charge transfer efficiency between bilayers of methylammonium lead iodide (MAPI3) with PC61BM or poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) charge transfer layers on excitation intensity. It analyzes the kinetic competition between interfacial electron/hole transfer and charge trapping and recombination within MAPI3 by employing a range of optical measurements including steady‐state (SS) photoluminescence quenching (PLQ), and transient photoluminescence and absorption over a broad range of excitation densities. The results indicate that PLQ measurements with a typical photoluminescence spectrometer can yield significantly different transfer efficiencies to those measured under 1 Sun irradiation. Steady‐state and pulsed measurements indicate low transfer efficiencies at low excitation conditions (<5E + 15 cm−3) due to rapid charge trapping and low transfer efficiencies at high excitation conditions (>5E + 17 cm−3) due to fast bimolecular recombination. Efficient transfer to PC61BM or PEDOT:PSS is only observed under intermediate excitation conditions (≈1 Sun irradiation) where electron and hole transfer times are determined to be 36 and 11 ns, respectively. The results are discussed in terms of their relevance to the excitation density dependence of device photocurrent generation, impact of charge trapping on this dependence, and appropriate methodologies to determine charge transfer efficiencies relevant to device performance.
Start Page: 1802474