Journal article 771 views 111 downloads
3D semiconducting nanostructures via inverse lipid cubic phases
M. R. Burton,
C. Lei,
P. A. Staniec,
N. J. Terrill,
A. M. Squires,
N. M. White,
Iris S. Nandhakumar,
Matthew Burton
Scientific Reports, Volume: 7, Issue: 1
Swansea University Author: Matthew Burton
-
PDF | Version of Record
Distributed under the terms of a Creative Commons Attribution (CC-BY-4.0)
Download (2.46MB)
DOI (Published version): 10.1038/s41598-017-06895-5
Abstract
Well-ordered and highly interconnected 3D semiconducting nanostructures of bismuth sulphide were prepared from inverse cubic lipid mesophases. This route offers significant advantages in terms of mild conditions, ease of use and electrode architecture over other routes to nanomaterials synthesis for...
Published in: | Scientific Reports |
---|---|
ISSN: | 2045-2322 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa50237 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2019-05-09T20:01:17Z |
---|---|
last_indexed |
2019-07-18T21:34:51Z |
id |
cronfa50237 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-07-18T14:51:22.6704664</datestamp><bib-version>v2</bib-version><id>50237</id><entry>2019-05-07</entry><title>3D semiconducting nanostructures via inverse lipid cubic phases</title><swanseaauthors><author><sid>2deade2806e39b1f749e9cf67ac640b2</sid><ORCID>0000-0002-0376-6322</ORCID><firstname>Matthew</firstname><surname>Burton</surname><name>Matthew Burton</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-05-07</date><deptcode>MTLS</deptcode><abstract>Well-ordered and highly interconnected 3D semiconducting nanostructures of bismuth sulphide were prepared from inverse cubic lipid mesophases. This route offers significant advantages in terms of mild conditions, ease of use and electrode architecture over other routes to nanomaterials synthesis for device applications. The resulting 3D bicontinous nanowire network films exhibited a single diamond topology of symmetry Fd3m (Q227) which was verified by Small angle X-ray scattering (SAXS) and Transmission electron microscopy (TEM) and holds great promise for potential applications in optoelectronics, photovoltaics and thermoelectrics.</abstract><type>Journal Article</type><journal>Scientific Reports</journal><volume>7</volume><journalNumber>1</journalNumber><publisher/><issnElectronic>2045-2322</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-12-31</publishedDate><doi>10.1038/s41598-017-06895-5</doi><url/><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-07-18T14:51:22.6704664</lastEdited><Created>2019-05-07T09:56:55.0812295</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>M. R.</firstname><surname>Burton</surname><order>1</order></author><author><firstname>C.</firstname><surname>Lei</surname><order>2</order></author><author><firstname>P. A.</firstname><surname>Staniec</surname><order>3</order></author><author><firstname>N. J.</firstname><surname>Terrill</surname><order>4</order></author><author><firstname>A. M.</firstname><surname>Squires</surname><order>5</order></author><author><firstname>N. M.</firstname><surname>White</surname><order>6</order></author><author><firstname>Iris S.</firstname><surname>Nandhakumar</surname><order>7</order></author><author><firstname>Matthew</firstname><surname>Burton</surname><orcid>0000-0002-0376-6322</orcid><order>8</order></author></authors><documents><document><filename>0050237-13052019110429.pdf</filename><originalFilename>burton2017.pdf</originalFilename><uploaded>2019-05-13T11:04:29.6870000</uploaded><type>Output</type><contentLength>2637871</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-05-13T00:00:00.0000000</embargoDate><documentNotes>Distributed under the terms of a Creative Commons Attribution (CC-BY-4.0)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-07-18T14:51:22.6704664 v2 50237 2019-05-07 3D semiconducting nanostructures via inverse lipid cubic phases 2deade2806e39b1f749e9cf67ac640b2 0000-0002-0376-6322 Matthew Burton Matthew Burton true false 2019-05-07 MTLS Well-ordered and highly interconnected 3D semiconducting nanostructures of bismuth sulphide were prepared from inverse cubic lipid mesophases. This route offers significant advantages in terms of mild conditions, ease of use and electrode architecture over other routes to nanomaterials synthesis for device applications. The resulting 3D bicontinous nanowire network films exhibited a single diamond topology of symmetry Fd3m (Q227) which was verified by Small angle X-ray scattering (SAXS) and Transmission electron microscopy (TEM) and holds great promise for potential applications in optoelectronics, photovoltaics and thermoelectrics. Journal Article Scientific Reports 7 1 2045-2322 31 12 2017 2017-12-31 10.1038/s41598-017-06895-5 COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University 2019-07-18T14:51:22.6704664 2019-05-07T09:56:55.0812295 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering M. R. Burton 1 C. Lei 2 P. A. Staniec 3 N. J. Terrill 4 A. M. Squires 5 N. M. White 6 Iris S. Nandhakumar 7 Matthew Burton 0000-0002-0376-6322 8 0050237-13052019110429.pdf burton2017.pdf 2019-05-13T11:04:29.6870000 Output 2637871 application/pdf Version of Record true 2019-05-13T00:00:00.0000000 Distributed under the terms of a Creative Commons Attribution (CC-BY-4.0) true eng |
title |
3D semiconducting nanostructures via inverse lipid cubic phases |
spellingShingle |
3D semiconducting nanostructures via inverse lipid cubic phases Matthew Burton |
title_short |
3D semiconducting nanostructures via inverse lipid cubic phases |
title_full |
3D semiconducting nanostructures via inverse lipid cubic phases |
title_fullStr |
3D semiconducting nanostructures via inverse lipid cubic phases |
title_full_unstemmed |
3D semiconducting nanostructures via inverse lipid cubic phases |
title_sort |
3D semiconducting nanostructures via inverse lipid cubic phases |
author_id_str_mv |
2deade2806e39b1f749e9cf67ac640b2 |
author_id_fullname_str_mv |
2deade2806e39b1f749e9cf67ac640b2_***_Matthew Burton |
author |
Matthew Burton |
author2 |
M. R. Burton C. Lei P. A. Staniec N. J. Terrill A. M. Squires N. M. White Iris S. Nandhakumar Matthew Burton |
format |
Journal article |
container_title |
Scientific Reports |
container_volume |
7 |
container_issue |
1 |
publishDate |
2017 |
institution |
Swansea University |
issn |
2045-2322 |
doi_str_mv |
10.1038/s41598-017-06895-5 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Well-ordered and highly interconnected 3D semiconducting nanostructures of bismuth sulphide were prepared from inverse cubic lipid mesophases. This route offers significant advantages in terms of mild conditions, ease of use and electrode architecture over other routes to nanomaterials synthesis for device applications. The resulting 3D bicontinous nanowire network films exhibited a single diamond topology of symmetry Fd3m (Q227) which was verified by Small angle X-ray scattering (SAXS) and Transmission electron microscopy (TEM) and holds great promise for potential applications in optoelectronics, photovoltaics and thermoelectrics. |
published_date |
2017-12-31T04:01:36Z |
_version_ |
1763753167629058048 |
score |
11.036531 |