Journal article 1518 views 138 downloads
Groundstate asymptotics for a class of singularly perturbed p-Laplacian problems in $${{\mathbb {R}}}^N$$
Annali di Matematica Pura ed Applicata (1923 -), Volume: 199, Issue: 1, Pages: 23 - 63
Swansea University Authors:
Carlo Mercuri , Vitaly Moroz
-
PDF | Accepted Manuscript
Download (408.21KB)
DOI (Published version): 10.1007/s10231-019-00865-6
Abstract
We study the asymptotic behavior of positive groundstate solutions to the quasilinear elliptic equation in the whole space; we give a characterisation of asymptotic regimes as a function of the parameters and show that the behavior of the groundstates is sensitive to the relation of the growth on th...
Published in: | Annali di Matematica Pura ed Applicata (1923 -) |
---|---|
ISSN: | 0373-3114 1618-1891 |
Published: |
Springer Science and Business Media LLC
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa50315 |
first_indexed |
2019-05-13T13:49:36Z |
---|---|
last_indexed |
2020-07-22T19:11:34Z |
id |
cronfa50315 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-07-22T18:00:19.2814510</datestamp><bib-version>v2</bib-version><id>50315</id><entry>2019-05-12</entry><title>Groundstate asymptotics for a class of singularly perturbed p-Laplacian problems in $${{\mathbb {R}}}^N$$</title><swanseaauthors><author><sid>46bf09624160610d6d6cf435996a5913</sid><ORCID>0000-0002-4289-5573</ORCID><firstname>Carlo</firstname><surname>Mercuri</surname><name>Carlo Mercuri</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>160965ff7131686ab9263d39886c8c1a</sid><ORCID>0000-0003-3302-8782</ORCID><firstname>Vitaly</firstname><surname>Moroz</surname><name>Vitaly Moroz</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-05-12</date><deptcode>MACS</deptcode><abstract>We study the asymptotic behavior of positive groundstate solutions to the quasilinear elliptic equation in the whole space; we give a characterisation of asymptotic regimes as a function of the parameters and show that the behavior of the groundstates is sensitive to the relation of the growth on the nonlinearities and the critical Sobolev exponent.</abstract><type>Journal Article</type><journal>Annali di Matematica Pura ed Applicata (1923 -)</journal><volume>199</volume><journalNumber>1</journalNumber><paginationStart>23</paginationStart><paginationEnd>63</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><issnPrint>0373-3114</issnPrint><issnElectronic>1618-1891</issnElectronic><keywords>Groundstates, Liouville-type theorems, quasilinear equations, singular perturbation</keywords><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-02-01</publishedDate><doi>10.1007/s10231-019-00865-6</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-22T18:00:19.2814510</lastEdited><Created>2019-05-12T14:39:55.0496251</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Wedad</firstname><surname>Albalawi</surname><order>1</order></author><author><firstname>Carlo</firstname><surname>Mercuri</surname><orcid>0000-0002-4289-5573</orcid><order>2</order></author><author><firstname>Vitaly</firstname><surname>Moroz</surname><orcid>0000-0003-3302-8782</orcid><order>3</order></author></authors><documents><document><filename>0050315-12052019144400.pdf</filename><originalFilename>Albalawi-Mercuri-MorozAMPA.pdf</originalFilename><uploaded>2019-05-12T14:44:00.9400000</uploaded><type>Output</type><contentLength>501221</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-05-17T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-07-22T18:00:19.2814510 v2 50315 2019-05-12 Groundstate asymptotics for a class of singularly perturbed p-Laplacian problems in $${{\mathbb {R}}}^N$$ 46bf09624160610d6d6cf435996a5913 0000-0002-4289-5573 Carlo Mercuri Carlo Mercuri true false 160965ff7131686ab9263d39886c8c1a 0000-0003-3302-8782 Vitaly Moroz Vitaly Moroz true false 2019-05-12 MACS We study the asymptotic behavior of positive groundstate solutions to the quasilinear elliptic equation in the whole space; we give a characterisation of asymptotic regimes as a function of the parameters and show that the behavior of the groundstates is sensitive to the relation of the growth on the nonlinearities and the critical Sobolev exponent. Journal Article Annali di Matematica Pura ed Applicata (1923 -) 199 1 23 63 Springer Science and Business Media LLC 0373-3114 1618-1891 Groundstates, Liouville-type theorems, quasilinear equations, singular perturbation 1 2 2020 2020-02-01 10.1007/s10231-019-00865-6 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2020-07-22T18:00:19.2814510 2019-05-12T14:39:55.0496251 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Wedad Albalawi 1 Carlo Mercuri 0000-0002-4289-5573 2 Vitaly Moroz 0000-0003-3302-8782 3 0050315-12052019144400.pdf Albalawi-Mercuri-MorozAMPA.pdf 2019-05-12T14:44:00.9400000 Output 501221 application/pdf Accepted Manuscript true 2020-05-17T00:00:00.0000000 true eng |
title |
Groundstate asymptotics for a class of singularly perturbed p-Laplacian problems in $${{\mathbb {R}}}^N$$ |
spellingShingle |
Groundstate asymptotics for a class of singularly perturbed p-Laplacian problems in $${{\mathbb {R}}}^N$$ Carlo Mercuri Vitaly Moroz |
title_short |
Groundstate asymptotics for a class of singularly perturbed p-Laplacian problems in $${{\mathbb {R}}}^N$$ |
title_full |
Groundstate asymptotics for a class of singularly perturbed p-Laplacian problems in $${{\mathbb {R}}}^N$$ |
title_fullStr |
Groundstate asymptotics for a class of singularly perturbed p-Laplacian problems in $${{\mathbb {R}}}^N$$ |
title_full_unstemmed |
Groundstate asymptotics for a class of singularly perturbed p-Laplacian problems in $${{\mathbb {R}}}^N$$ |
title_sort |
Groundstate asymptotics for a class of singularly perturbed p-Laplacian problems in $${{\mathbb {R}}}^N$$ |
author_id_str_mv |
46bf09624160610d6d6cf435996a5913 160965ff7131686ab9263d39886c8c1a |
author_id_fullname_str_mv |
46bf09624160610d6d6cf435996a5913_***_Carlo Mercuri 160965ff7131686ab9263d39886c8c1a_***_Vitaly Moroz |
author |
Carlo Mercuri Vitaly Moroz |
author2 |
Wedad Albalawi Carlo Mercuri Vitaly Moroz |
format |
Journal article |
container_title |
Annali di Matematica Pura ed Applicata (1923 -) |
container_volume |
199 |
container_issue |
1 |
container_start_page |
23 |
publishDate |
2020 |
institution |
Swansea University |
issn |
0373-3114 1618-1891 |
doi_str_mv |
10.1007/s10231-019-00865-6 |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
We study the asymptotic behavior of positive groundstate solutions to the quasilinear elliptic equation in the whole space; we give a characterisation of asymptotic regimes as a function of the parameters and show that the behavior of the groundstates is sensitive to the relation of the growth on the nonlinearities and the critical Sobolev exponent. |
published_date |
2020-02-01T07:29:15Z |
_version_ |
1829177242045906944 |
score |
11.057774 |