Journal article 1429 views 266 downloads
Geometrical optimization for high efficiency carbon perovskite modules
Solar Energy, Volume: 187, Pages: 129 - 136
Swansea University Authors: Youmna Mouhamad, Simone Meroni , Francesca De Rossi , Jenny Baker, Trystan Watson , Justin Searle , Eifion Jewell
-
PDF | Accepted Manuscript
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Download (1.43MB)
DOI (Published version): 10.1016/j.solener.2019.05.047
Abstract
The carbon based perovskite solar cell (C-PSC) has a strong commercial potential due its low manufacturing cost and its improved stability. A C-PSC consists of three mesoporous layers sandwiched between a Fluorine-doped tin oxide (FTO) substrate as bottom electrode and carbon as top electrode. Howev...
Published in: | Solar Energy |
---|---|
ISSN: | 0038-092X |
Published: |
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa50504 |
first_indexed |
2019-06-05T11:07:39Z |
---|---|
last_indexed |
2023-02-22T03:58:15Z |
id |
cronfa50504 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-02-21T16:18:36.4360765</datestamp><bib-version>v2</bib-version><id>50504</id><entry>2019-05-23</entry><title>Geometrical optimization for high efficiency carbon perovskite modules</title><swanseaauthors><author><sid>24a6a0a4d08557112dfcfbcdb07d7013</sid><ORCID/><firstname>Youmna</firstname><surname>Mouhamad</surname><name>Youmna Mouhamad</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>78a4cf80ab2fe6cca80716b5d357d8dd</sid><ORCID>0000-0002-6901-772X</ORCID><firstname>Simone</firstname><surname>Meroni</surname><name>Simone Meroni</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>04b56f7760ea2de5fd65985ff510d625</sid><ORCID>0000-0002-6591-5928</ORCID><firstname>Francesca</firstname><surname>De Rossi</surname><name>Francesca De Rossi</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>6913b56f36f0c8cd34d8c9040d2df460</sid><firstname>Jenny</firstname><surname>Baker</surname><name>Jenny Baker</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>0e3f2c3812f181eaed11c45554d4cdd0</sid><ORCID>0000-0003-1101-075X</ORCID><firstname>Justin</firstname><surname>Searle</surname><name>Justin Searle</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>13dc152c178d51abfe0634445b0acf07</sid><ORCID>0000-0002-6894-2251</ORCID><firstname>Eifion</firstname><surname>Jewell</surname><name>Eifion Jewell</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-05-23</date><abstract>The carbon based perovskite solar cell (C-PSC) has a strong commercial potential due its low manufacturing cost and its improved stability. A C-PSC consists of three mesoporous layers sandwiched between a Fluorine-doped tin oxide (FTO) substrate as bottom electrode and carbon as top electrode. However, the low conductivity of the two electrodes represents a real challenge when scaling from individual cells to modules. Here, 2D direct current simulation is used to investigate the influence of width of the active area on the performance of a single C-PSC. The same method is used to study the effect of the sub-cell’s width, the interconnection’s width and the contact resistance at the interconnection on the performance of a 10 sub-cells module connected in series. The intrinsic properties of the carbon cell are taken in account using experimental JSC and VOC as an input to the modelling. The carbon conductivity is found to be critical in defining the optimum geometry. For a 10 Ω/sq carbon sheet resistance, the optimum interconnection width is 500 μm and the sub cell width is 4.9 mm, leading to an optimum fill factor of 64%.</abstract><type>Journal Article</type><journal>Solar Energy</journal><volume>187</volume><journalNumber/><paginationStart>129</paginationStart><paginationEnd>136</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0038-092X</issnPrint><issnElectronic/><keywords>Carbon, Perovskite, Module, Modelling, Resistive losses</keywords><publishedDay>15</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-07-15</publishedDate><doi>10.1016/j.solener.2019.05.047</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-02-21T16:18:36.4360765</lastEdited><Created>2019-05-23T12:04:10.2982619</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Youmna</firstname><surname>Mouhamad</surname><orcid/><order>1</order></author><author><firstname>Simone</firstname><surname>Meroni</surname><orcid>0000-0002-6901-772X</orcid><order>2</order></author><author><firstname>Francesca</firstname><surname>De Rossi</surname><orcid>0000-0002-6591-5928</orcid><order>3</order></author><author><firstname>Jenny</firstname><surname>Baker</surname><order>4</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>5</order></author><author><firstname>Justin</firstname><surname>Searle</surname><orcid>0000-0003-1101-075X</orcid><order>6</order></author><author><firstname>Eifion</firstname><surname>Jewell</surname><orcid>0000-0002-6894-2251</orcid><order>7</order></author></authors><documents><document><filename>0050504-04072019084459.pdf</filename><originalFilename>mouhamad2019.pdf</originalFilename><uploaded>2019-07-04T08:44:59.1600000</uploaded><type>Output</type><contentLength>1477972</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-05-22T00:00:00.0000000</embargoDate><documentNotes>© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2023-02-21T16:18:36.4360765 v2 50504 2019-05-23 Geometrical optimization for high efficiency carbon perovskite modules 24a6a0a4d08557112dfcfbcdb07d7013 Youmna Mouhamad Youmna Mouhamad true false 78a4cf80ab2fe6cca80716b5d357d8dd 0000-0002-6901-772X Simone Meroni Simone Meroni true false 04b56f7760ea2de5fd65985ff510d625 0000-0002-6591-5928 Francesca De Rossi Francesca De Rossi true false 6913b56f36f0c8cd34d8c9040d2df460 Jenny Baker Jenny Baker true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 0e3f2c3812f181eaed11c45554d4cdd0 0000-0003-1101-075X Justin Searle Justin Searle true false 13dc152c178d51abfe0634445b0acf07 0000-0002-6894-2251 Eifion Jewell Eifion Jewell true false 2019-05-23 The carbon based perovskite solar cell (C-PSC) has a strong commercial potential due its low manufacturing cost and its improved stability. A C-PSC consists of three mesoporous layers sandwiched between a Fluorine-doped tin oxide (FTO) substrate as bottom electrode and carbon as top electrode. However, the low conductivity of the two electrodes represents a real challenge when scaling from individual cells to modules. Here, 2D direct current simulation is used to investigate the influence of width of the active area on the performance of a single C-PSC. The same method is used to study the effect of the sub-cell’s width, the interconnection’s width and the contact resistance at the interconnection on the performance of a 10 sub-cells module connected in series. The intrinsic properties of the carbon cell are taken in account using experimental JSC and VOC as an input to the modelling. The carbon conductivity is found to be critical in defining the optimum geometry. For a 10 Ω/sq carbon sheet resistance, the optimum interconnection width is 500 μm and the sub cell width is 4.9 mm, leading to an optimum fill factor of 64%. Journal Article Solar Energy 187 129 136 0038-092X Carbon, Perovskite, Module, Modelling, Resistive losses 15 7 2019 2019-07-15 10.1016/j.solener.2019.05.047 COLLEGE NANME COLLEGE CODE Swansea University 2023-02-21T16:18:36.4360765 2019-05-23T12:04:10.2982619 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Youmna Mouhamad 1 Simone Meroni 0000-0002-6901-772X 2 Francesca De Rossi 0000-0002-6591-5928 3 Jenny Baker 4 Trystan Watson 0000-0002-8015-1436 5 Justin Searle 0000-0003-1101-075X 6 Eifion Jewell 0000-0002-6894-2251 7 0050504-04072019084459.pdf mouhamad2019.pdf 2019-07-04T08:44:59.1600000 Output 1477972 application/pdf Accepted Manuscript true 2020-05-22T00:00:00.0000000 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license true eng http://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
Geometrical optimization for high efficiency carbon perovskite modules |
spellingShingle |
Geometrical optimization for high efficiency carbon perovskite modules Youmna Mouhamad Simone Meroni Francesca De Rossi Jenny Baker Trystan Watson Justin Searle Eifion Jewell |
title_short |
Geometrical optimization for high efficiency carbon perovskite modules |
title_full |
Geometrical optimization for high efficiency carbon perovskite modules |
title_fullStr |
Geometrical optimization for high efficiency carbon perovskite modules |
title_full_unstemmed |
Geometrical optimization for high efficiency carbon perovskite modules |
title_sort |
Geometrical optimization for high efficiency carbon perovskite modules |
author_id_str_mv |
24a6a0a4d08557112dfcfbcdb07d7013 78a4cf80ab2fe6cca80716b5d357d8dd 04b56f7760ea2de5fd65985ff510d625 6913b56f36f0c8cd34d8c9040d2df460 a210327b52472cfe8df9b8108d661457 0e3f2c3812f181eaed11c45554d4cdd0 13dc152c178d51abfe0634445b0acf07 |
author_id_fullname_str_mv |
24a6a0a4d08557112dfcfbcdb07d7013_***_Youmna Mouhamad 78a4cf80ab2fe6cca80716b5d357d8dd_***_Simone Meroni 04b56f7760ea2de5fd65985ff510d625_***_Francesca De Rossi 6913b56f36f0c8cd34d8c9040d2df460_***_Jenny Baker a210327b52472cfe8df9b8108d661457_***_Trystan Watson 0e3f2c3812f181eaed11c45554d4cdd0_***_Justin Searle 13dc152c178d51abfe0634445b0acf07_***_Eifion Jewell |
author |
Youmna Mouhamad Simone Meroni Francesca De Rossi Jenny Baker Trystan Watson Justin Searle Eifion Jewell |
author2 |
Youmna Mouhamad Simone Meroni Francesca De Rossi Jenny Baker Trystan Watson Justin Searle Eifion Jewell |
format |
Journal article |
container_title |
Solar Energy |
container_volume |
187 |
container_start_page |
129 |
publishDate |
2019 |
institution |
Swansea University |
issn |
0038-092X |
doi_str_mv |
10.1016/j.solener.2019.05.047 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
The carbon based perovskite solar cell (C-PSC) has a strong commercial potential due its low manufacturing cost and its improved stability. A C-PSC consists of three mesoporous layers sandwiched between a Fluorine-doped tin oxide (FTO) substrate as bottom electrode and carbon as top electrode. However, the low conductivity of the two electrodes represents a real challenge when scaling from individual cells to modules. Here, 2D direct current simulation is used to investigate the influence of width of the active area on the performance of a single C-PSC. The same method is used to study the effect of the sub-cell’s width, the interconnection’s width and the contact resistance at the interconnection on the performance of a 10 sub-cells module connected in series. The intrinsic properties of the carbon cell are taken in account using experimental JSC and VOC as an input to the modelling. The carbon conductivity is found to be critical in defining the optimum geometry. For a 10 Ω/sq carbon sheet resistance, the optimum interconnection width is 500 μm and the sub cell width is 4.9 mm, leading to an optimum fill factor of 64%. |
published_date |
2019-07-15T13:42:34Z |
_version_ |
1821956746488315904 |
score |
11.048149 |