No Cover Image

Journal article 1114 views 227 downloads

3D Printed SnSe Thermoelectric Generators with High Figure of Merit

David Beynon Orcid Logo, Matthew Burton Orcid Logo, Shahin Mehraban, David Beynon, James McGettrick, Trystan Watson Orcid Logo, Nicholas Lavery Orcid Logo, Matt Carnie Orcid Logo

Advanced Energy Materials, Volume: 9, Issue: 26

Swansea University Authors: David Beynon Orcid Logo, Matthew Burton Orcid Logo, Trystan Watson Orcid Logo, Nicholas Lavery Orcid Logo, Matt Carnie Orcid Logo

  • Burtonetal.-2019-3DPrintedSnSeThermoelectricGeneratorswithHighFigureofMerit.pdf

    PDF | Version of Record

    Distributed under the terms of a Creative Commons Attribution (CC-BY) Licence.

    Download (2.8MB)

Check full text

DOI (Published version): 10.1002/aenm.201900201

Abstract

Since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 in tin selenide (SnSe), the material has attracted much attention in the field of thermoelectrics. This paper reports a novel pseudo‐3D printing technique to fabricate bulk SnSe thermoelectric elements, allowing for the fabrication...

Full description

Published in: Advanced Energy Materials
ISSN: 1614-6832 1614-6840
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa50643
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2019-06-05T11:08:04Z
last_indexed 2020-12-18T04:11:48Z
id cronfa50643
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-12-17T10:22:30.8275808</datestamp><bib-version>v2</bib-version><id>50643</id><entry>2019-06-05</entry><title>3D Printed SnSe Thermoelectric Generators with High Figure of Merit</title><swanseaauthors><author><sid>f5cf40043658d0b8a747ef6224019939</sid><ORCID>0000-0002-8189-9489</ORCID><firstname>David</firstname><surname>Beynon</surname><name>David Beynon</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>2deade2806e39b1f749e9cf67ac640b2</sid><ORCID>0000-0002-0376-6322</ORCID><firstname>Matthew</firstname><surname>Burton</surname><name>Matthew Burton</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>9f102ff59824fd4f7ce3d40144304395</sid><ORCID>0000-0003-0953-5936</ORCID><firstname>Nicholas</firstname><surname>Lavery</surname><name>Nicholas Lavery</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>73b367694366a646b90bb15db32bb8c0</sid><ORCID>0000-0002-4232-1967</ORCID><firstname>Matt</firstname><surname>Carnie</surname><name>Matt Carnie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-06-05</date><deptcode>MTLS</deptcode><abstract>Since the discovery of the record figure of merit (ZT) of 2.6 &#xB1; 0.3 in tin selenide (SnSe), the material has attracted much attention in the field of thermoelectrics. This paper reports a novel pseudo&#x2010;3D printing technique to fabricate bulk SnSe thermoelectric elements, allowing for the fabrication of standard configuration thermoelectric generators. In contrast to fabrication examples presented to date, this technique is potentially very low&#x2010;cost and allows for facile, scalable, and rapid fabrication. Bulk SnSe thermoelectric elements are produced and characterized over a wide range of temperatures. An element printed from an ink with 4% organic binder produces the highest performance, with a ZT value of 1.7 (&#xB1;0.25) at 758 K. This is the highest ZT reported of any printed thermoelectric material, and the first bulk printed material to operate at this temperature. Finally, a proof&#x2010;of&#x2010;concept, all printed SnSe thermoelectric generator is presented, producing 20 &#xB5;W at 772 K.</abstract><type>Journal Article</type><journal>Advanced Energy Materials</journal><volume>9</volume><journalNumber>26</journalNumber><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1614-6832</issnPrint><issnElectronic>1614-6840</issnElectronic><keywords/><publishedDay>12</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-07-12</publishedDate><doi>10.1002/aenm.201900201</doi><url/><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><degreesponsorsfunders>RCUK</degreesponsorsfunders><apcterm/><lastEdited>2020-12-17T10:22:30.8275808</lastEdited><Created>2019-06-05T09:34:47.1112462</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering</level></path><authors><author><firstname>David</firstname><surname>Beynon</surname><orcid>0000-0002-8189-9489</orcid><order>1</order></author><author><firstname>Matthew</firstname><surname>Burton</surname><orcid>0000-0002-0376-6322</orcid><order>2</order></author><author><firstname>Shahin</firstname><surname>Mehraban</surname><order>3</order></author><author><firstname>David</firstname><surname>Beynon</surname><order>4</order></author><author><firstname>James</firstname><surname>McGettrick</surname><order>5</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>6</order></author><author><firstname>Nicholas</firstname><surname>Lavery</surname><orcid>0000-0003-0953-5936</orcid><order>7</order></author><author><firstname>Matt</firstname><surname>Carnie</surname><orcid>0000-0002-4232-1967</orcid><order>8</order></author></authors><documents><document><filename>0050643-05062019093720.pdf</filename><originalFilename>Burtonetal.-2019-3DPrintedSnSeThermoelectricGeneratorswithHighFigureofMerit.pdf</originalFilename><uploaded>2019-06-05T09:37:20.1530000</uploaded><type>Output</type><contentLength>2908260</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-06-05T00:00:00.0000000</embargoDate><documentNotes>Distributed under the terms of a Creative Commons Attribution (CC-BY) Licence.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2020-12-17T10:22:30.8275808 v2 50643 2019-06-05 3D Printed SnSe Thermoelectric Generators with High Figure of Merit f5cf40043658d0b8a747ef6224019939 0000-0002-8189-9489 David Beynon David Beynon true false 2deade2806e39b1f749e9cf67ac640b2 0000-0002-0376-6322 Matthew Burton Matthew Burton true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 9f102ff59824fd4f7ce3d40144304395 0000-0003-0953-5936 Nicholas Lavery Nicholas Lavery true false 73b367694366a646b90bb15db32bb8c0 0000-0002-4232-1967 Matt Carnie Matt Carnie true false 2019-06-05 MTLS Since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 in tin selenide (SnSe), the material has attracted much attention in the field of thermoelectrics. This paper reports a novel pseudo‐3D printing technique to fabricate bulk SnSe thermoelectric elements, allowing for the fabrication of standard configuration thermoelectric generators. In contrast to fabrication examples presented to date, this technique is potentially very low‐cost and allows for facile, scalable, and rapid fabrication. Bulk SnSe thermoelectric elements are produced and characterized over a wide range of temperatures. An element printed from an ink with 4% organic binder produces the highest performance, with a ZT value of 1.7 (±0.25) at 758 K. This is the highest ZT reported of any printed thermoelectric material, and the first bulk printed material to operate at this temperature. Finally, a proof‐of‐concept, all printed SnSe thermoelectric generator is presented, producing 20 µW at 772 K. Journal Article Advanced Energy Materials 9 26 1614-6832 1614-6840 12 7 2019 2019-07-12 10.1002/aenm.201900201 COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University RCUK 2020-12-17T10:22:30.8275808 2019-06-05T09:34:47.1112462 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering David Beynon 0000-0002-8189-9489 1 Matthew Burton 0000-0002-0376-6322 2 Shahin Mehraban 3 David Beynon 4 James McGettrick 5 Trystan Watson 0000-0002-8015-1436 6 Nicholas Lavery 0000-0003-0953-5936 7 Matt Carnie 0000-0002-4232-1967 8 0050643-05062019093720.pdf Burtonetal.-2019-3DPrintedSnSeThermoelectricGeneratorswithHighFigureofMerit.pdf 2019-06-05T09:37:20.1530000 Output 2908260 application/pdf Version of Record true 2019-06-05T00:00:00.0000000 Distributed under the terms of a Creative Commons Attribution (CC-BY) Licence. true eng https://creativecommons.org/licenses/by/4.0/
title 3D Printed SnSe Thermoelectric Generators with High Figure of Merit
spellingShingle 3D Printed SnSe Thermoelectric Generators with High Figure of Merit
David Beynon
Matthew Burton
Trystan Watson
Nicholas Lavery
Matt Carnie
title_short 3D Printed SnSe Thermoelectric Generators with High Figure of Merit
title_full 3D Printed SnSe Thermoelectric Generators with High Figure of Merit
title_fullStr 3D Printed SnSe Thermoelectric Generators with High Figure of Merit
title_full_unstemmed 3D Printed SnSe Thermoelectric Generators with High Figure of Merit
title_sort 3D Printed SnSe Thermoelectric Generators with High Figure of Merit
author_id_str_mv f5cf40043658d0b8a747ef6224019939
2deade2806e39b1f749e9cf67ac640b2
a210327b52472cfe8df9b8108d661457
9f102ff59824fd4f7ce3d40144304395
73b367694366a646b90bb15db32bb8c0
author_id_fullname_str_mv f5cf40043658d0b8a747ef6224019939_***_David Beynon
2deade2806e39b1f749e9cf67ac640b2_***_Matthew Burton
a210327b52472cfe8df9b8108d661457_***_Trystan Watson
9f102ff59824fd4f7ce3d40144304395_***_Nicholas Lavery
73b367694366a646b90bb15db32bb8c0_***_Matt Carnie
author David Beynon
Matthew Burton
Trystan Watson
Nicholas Lavery
Matt Carnie
author2 David Beynon
Matthew Burton
Shahin Mehraban
David Beynon
James McGettrick
Trystan Watson
Nicholas Lavery
Matt Carnie
format Journal article
container_title Advanced Energy Materials
container_volume 9
container_issue 26
publishDate 2019
institution Swansea University
issn 1614-6832
1614-6840
doi_str_mv 10.1002/aenm.201900201
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering
document_store_str 1
active_str 0
description Since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 in tin selenide (SnSe), the material has attracted much attention in the field of thermoelectrics. This paper reports a novel pseudo‐3D printing technique to fabricate bulk SnSe thermoelectric elements, allowing for the fabrication of standard configuration thermoelectric generators. In contrast to fabrication examples presented to date, this technique is potentially very low‐cost and allows for facile, scalable, and rapid fabrication. Bulk SnSe thermoelectric elements are produced and characterized over a wide range of temperatures. An element printed from an ink with 4% organic binder produces the highest performance, with a ZT value of 1.7 (±0.25) at 758 K. This is the highest ZT reported of any printed thermoelectric material, and the first bulk printed material to operate at this temperature. Finally, a proof‐of‐concept, all printed SnSe thermoelectric generator is presented, producing 20 µW at 772 K.
published_date 2019-07-12T04:02:11Z
_version_ 1763753204532641792
score 11.016235