No Cover Image

Journal article 368 views 43 downloads

On the effect of surface recombination in thin film solar cells, light emitting diodes and photodetectors

Oskar J. Sandberg, Ardalan Armin Orcid Logo

Synthetic Metals, Volume: 254, Pages: 114 - 121

Swansea University Author: Ardalan Armin Orcid Logo

  • RevisedMS.pdf

    PDF | Accepted Manuscript

    Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).

    Download (720.06KB)

Abstract

Radiative and non-radiative charge carrier recombination in thin-film diodes plays a key role in determining the efficiency of electronic devices made of next generation semiconductors such as organic, perovskite and nanocrystals. In this work, we show that lowering the bulk recombination does not n...

Full description

Published in: Synthetic Metals
ISSN: 03796779
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa50764
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Radiative and non-radiative charge carrier recombination in thin-film diodes plays a key role in determining the efficiency of electronic devices made of next generation semiconductors such as organic, perovskite and nanocrystals. In this work, we show that lowering the bulk recombination does not necessarily result in enhanced performance metrics of electronic devices. From the perspective of charge carrier extraction and injection, the radiative limit of the open-circuit voltage of solar cells, noise current of photodetectors and lasing threshold of injection lasers cannot be improved if the contacts are not perfectly selective. A numerical drift-diffusion model is used to investigate the interplay between bulk recombination and surface recombination of minority carriers at the contacts in bipolar thin diode devices based on low-mobility semiconductors. The surface recombination becomes prominent in case of reduced bulk recombination strengths when non-selective contacts, i. e. contacts that are either metallic or have imperfect charge-selective interlayer, are employed. Finally, we derive analytical approximations for the case when diffusion-limited surface recombination of minority carriers at Ohmic contacts dominates the dark current. These results indicate that having perfectly selective contacts becomes crucial in systems with suppressed bulk recombination – a challenging requirement for future state-of-the-art thin-film solar cells, light-emitting devices and photodetectors made of next generation semiconductors.
College: College of Science
Start Page: 114
End Page: 121