No Cover Image

Journal article 114 views 14 downloads

Flame assisted chemical vapour deposition NiO hole transport layers for mesoporous carbon perovskite cells / Trystan, Watson

Journal of Materials Chemistry C, Volume: 7, Issue: 42, Pages: 13235 - 13242

Swansea University Author: Trystan, Watson

Check full text

DOI (Published version): 10.1039/c9tc03922h

Abstract

Flame assisted chemical vapour deposition was utilised to directly deposit polycrystalline mesoporous NiO to enhance charge transport within carbon perovskite solar cells (C-PSC). This versatile technique is highly suited for deposition of large area thin films along with the ability to use simple,...

Full description

Published in: Journal of Materials Chemistry C
ISSN: 2050-7526 2050-7534
Published: Royal Society of Chemistry (RSC) 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa51378
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2019-08-12T15:30:21Z
last_indexed 2019-08-12T15:30:21Z
id cronfa51378
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-08-12T12:08:02.7562782</datestamp><bib-version>v2</bib-version><id>51378</id><entry>2019-08-12</entry><title>Flame assisted chemical vapour deposition NiO hole transport layers for mesoporous carbon perovskite cells</title><swanseaauthors><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-08-12</date><deptcode>EEN</deptcode><abstract>Flame assisted chemical vapour deposition was utilised to directly deposit polycrystalline mesoporous NiO to enhance charge transport within carbon perovskite solar cells (C-PSC). This versatile technique is highly suited for deposition of large area thin films along with the ability to use simple, stable aqueous salts. The combination of low cost methods of screen printing and FACVD to produce the C-PSC make this an attractive route towards commercialisation. The effects of deposition parameters on the morphology, crystallinity and density of the deposited NiO are discussed, along with the importance of use of a low propane, &#x2018;lean flame&#x2019; on both the NiO and underlying F-doped tin oxide electrode. The thickness of the NiO layer was found to be critical in optimising the C-PSC efficiency. Addition of the NiO layer resulted in an increased short circuit current density (17.30 mA cm&#x2212;2 to 20.28 mA cm&#x2212;2). At an estimated NiO thickness of 17 nm the average cell efficiency (10.73%) surpassed that of the control sample (9.08%) so confirming the promise of this technique.</abstract><type>Journal Article</type><journal>Journal of Materials Chemistry C</journal><volume>7</volume><journalNumber>42</journalNumber><paginationStart>13235</paginationStart><paginationEnd>13242</paginationEnd><publisher>Royal Society of Chemistry (RSC)</publisher><issnPrint>2050-7526</issnPrint><issnElectronic>2050-7534</issnElectronic><keywords/><publishedDay>12</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-11-12</publishedDate><doi>10.1039/c9tc03922h</doi><url>http://dx.doi.org/10.1039/c9tc03922h</url><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution>Swansea University</institution><lastEdited>2019-08-12T12:08:02.7562782</lastEdited><Created>2019-08-12T12:04:31.9668551</Created><authors><author><firstname>Heather M.</firstname><surname>Yates</surname><order>1</order></author><author><firstname>Simone M. P.</firstname><surname>Meroni</surname><order>2</order></author><author><firstname>Dimitrios</firstname><surname>Raptis</surname><order>3</order></author><author><firstname>John L.</firstname><surname>Hodgkinson</surname><order>4</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>5</order></author></authors><documents><document><filename>51378__15859__68fd9165c0c04627be675f6ef5d496dc.pdf</filename><originalFilename>yates2019(2).pdf</originalFilename><uploaded>2019-11-12T09:20:33.8528337</uploaded><type>Output</type><contentLength>3183840</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><action/><embargoDate>2019-11-12T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents></rfc1807>
spelling 2019-08-12T12:08:02.7562782 v2 51378 2019-08-12 Flame assisted chemical vapour deposition NiO hole transport layers for mesoporous carbon perovskite cells a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 2019-08-12 EEN Flame assisted chemical vapour deposition was utilised to directly deposit polycrystalline mesoporous NiO to enhance charge transport within carbon perovskite solar cells (C-PSC). This versatile technique is highly suited for deposition of large area thin films along with the ability to use simple, stable aqueous salts. The combination of low cost methods of screen printing and FACVD to produce the C-PSC make this an attractive route towards commercialisation. The effects of deposition parameters on the morphology, crystallinity and density of the deposited NiO are discussed, along with the importance of use of a low propane, ‘lean flame’ on both the NiO and underlying F-doped tin oxide electrode. The thickness of the NiO layer was found to be critical in optimising the C-PSC efficiency. Addition of the NiO layer resulted in an increased short circuit current density (17.30 mA cm−2 to 20.28 mA cm−2). At an estimated NiO thickness of 17 nm the average cell efficiency (10.73%) surpassed that of the control sample (9.08%) so confirming the promise of this technique. Journal Article Journal of Materials Chemistry C 7 42 13235 13242 Royal Society of Chemistry (RSC) 2050-7526 2050-7534 12 11 2019 2019-11-12 10.1039/c9tc03922h http://dx.doi.org/10.1039/c9tc03922h COLLEGE NANME Engineering COLLEGE CODE EEN Swansea University 2019-08-12T12:08:02.7562782 2019-08-12T12:04:31.9668551 Heather M. Yates 1 Simone M. P. Meroni 2 Dimitrios Raptis 3 John L. Hodgkinson 4 Trystan Watson 0000-0002-8015-1436 5 51378__15859__68fd9165c0c04627be675f6ef5d496dc.pdf yates2019(2).pdf 2019-11-12T09:20:33.8528337 Output 3183840 application/pdf Version of Record true 2019-11-12T00:00:00.0000000 true
title Flame assisted chemical vapour deposition NiO hole transport layers for mesoporous carbon perovskite cells
spellingShingle Flame assisted chemical vapour deposition NiO hole transport layers for mesoporous carbon perovskite cells
Trystan, Watson
title_short Flame assisted chemical vapour deposition NiO hole transport layers for mesoporous carbon perovskite cells
title_full Flame assisted chemical vapour deposition NiO hole transport layers for mesoporous carbon perovskite cells
title_fullStr Flame assisted chemical vapour deposition NiO hole transport layers for mesoporous carbon perovskite cells
title_full_unstemmed Flame assisted chemical vapour deposition NiO hole transport layers for mesoporous carbon perovskite cells
title_sort Flame assisted chemical vapour deposition NiO hole transport layers for mesoporous carbon perovskite cells
author_id_str_mv a210327b52472cfe8df9b8108d661457
author_id_fullname_str_mv a210327b52472cfe8df9b8108d661457_***_Trystan, Watson
author Trystan, Watson
format Journal article
container_title Journal of Materials Chemistry C
container_volume 7
container_issue 42
container_start_page 13235
publishDate 2019
institution Swansea University
issn 2050-7526
2050-7534
doi_str_mv 10.1039/c9tc03922h
publisher Royal Society of Chemistry (RSC)
url http://dx.doi.org/10.1039/c9tc03922h
document_store_str 1
active_str 0
description Flame assisted chemical vapour deposition was utilised to directly deposit polycrystalline mesoporous NiO to enhance charge transport within carbon perovskite solar cells (C-PSC). This versatile technique is highly suited for deposition of large area thin films along with the ability to use simple, stable aqueous salts. The combination of low cost methods of screen printing and FACVD to produce the C-PSC make this an attractive route towards commercialisation. The effects of deposition parameters on the morphology, crystallinity and density of the deposited NiO are discussed, along with the importance of use of a low propane, ‘lean flame’ on both the NiO and underlying F-doped tin oxide electrode. The thickness of the NiO layer was found to be critical in optimising the C-PSC efficiency. Addition of the NiO layer resulted in an increased short circuit current density (17.30 mA cm−2 to 20.28 mA cm−2). At an estimated NiO thickness of 17 nm the average cell efficiency (10.73%) surpassed that of the control sample (9.08%) so confirming the promise of this technique.
published_date 2019-11-12T04:16:08Z
_version_ 1674244279206150144
score 10.741586