No Cover Image

Journal article 54 views 10 downloads

Addition of Graphite Filler to Enhance Electrical, Morphological, Thermal, and Mechanical Properties in Poly (Ethylene Terephthalate): Experimental Characterization and Material Modeling / Mokarram, Hossain

Polymers, Volume: 11, Issue: 9, Start page: 1141

Swansea University Author: Mokarram, Hossain

  • alshammari2019.pdf

    PDF | Version of Record

    This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license

    Download (3.05MB)

Check full text

DOI (Published version): 10.3390/polym11091411

Abstract

Poly(ethylene terephthalate)/graphite (PET/G) micro-composites were fabricated by the melt compounding method using a minilab extruder. The carbon fillers were found to act as nucleating agents for the PET matrix and hence accelerated crystallization and increased the degree of crystallinity. TGA sh...

Full description

Published in: Polymers
ISSN: 2073-4360
Published: Basel MDPI 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa51611
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Poly(ethylene terephthalate)/graphite (PET/G) micro-composites were fabricated by the melt compounding method using a minilab extruder. The carbon fillers were found to act as nucleating agents for the PET matrix and hence accelerated crystallization and increased the degree of crystallinity. TGA showed that carbon fillers improved the resistance to thermal and thermo-oxidative degradation under both air and nitrogen atmospheres. However, a poor agreement was observed at higher loadings of the filler where the composites displayed reduced reinforcement efficiency. The results demonstrate that the addition of graphite at loading >14.5 wt.% made electrically conductive composites. It was calculated that the electric conductivities of PET/graphite micro-composites were enhanced, above the percolation threshold values by two orders of magnitudes compared to the PET matrix. The minimum value of conductivity required to avoid electrostatic charge application of an insulating polymer was achieved, just above the threshold values. The addition of graphite also improved thermal stability of PET, accelerated its crystallization process and increased the degree of crystallinity. Microscopic results exhibit no indication of aggregations at 2 wt.% graphite, whereas more agglomeration and rolling up could be seen as the graphite content was increased in the PET matrix (in particular, above the percolation threshold value). Furthermore, based on the mechanical experimental characterization of the PET/graphite micro-composites, a large deformation-based mathematical model is proposed for material behavior predictions. The model fits well the experimental data and predicts other mechanical data that are not included in the parameter identification.
Keywords: graphite, PET, conductive fillers, electrical, morphological, thermal properties, filled polymer model, large strain model
College: College of Engineering
Issue: 9
Start Page: 1141