No Cover Image

Conference Paper/Proceeding/Abstract 241 views

Cyclic fatigue testing of a ni-based alloy in a corrosive environment

Hollie Cockings Orcid Logo

Materials Science and Technology Conference and Exhibition 2015, MS and T 2015, Volume: 1, Pages: 1209 - 1223

Swansea University Author: Hollie Cockings Orcid Logo

Abstract

Operation of gas turbines at higher temperatures can improve fuel efficiency and reduce carbon emissions, but may also lead to increased corrosion of turbine materials. A program was designed to improve the understanding of corrosion-fatigue behaviour of two grain size variants of a nickel-based sup...

Full description

Published in: Materials Science and Technology Conference and Exhibition 2015, MS and T 2015
ISBN: 978-151081393-9 978-151081393-9
Published: USA
Online Access: https://www.scopus.com/record/display.uri?eid=2-s2.0-84961171424&origin=inward&txGid=73013c1350c0c7eb4f103324a951e608
URI: https://cronfa.swan.ac.uk/Record/cronfa52615
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2020-01-31T19:48:27Z
last_indexed 2020-09-17T03:15:26Z
id cronfa52615
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-10-30T15:50:02.8578675</datestamp><bib-version>v2</bib-version><id>52615</id><entry>2019-10-30</entry><title>Cyclic fatigue testing of a ni-based alloy in a corrosive environment</title><swanseaauthors><author><sid>c951e311ac85396c2bb8ed4153b19fde</sid><ORCID>0000-0002-9745-4521</ORCID><firstname>Hollie</firstname><surname>Cockings</surname><name>Hollie Cockings</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-10-30</date><deptcode>MECH</deptcode><abstract>Operation of gas turbines at higher temperatures can improve fuel efficiency and reduce carbon emissions, but may also lead to increased corrosion of turbine materials. A program was designed to improve the understanding of corrosion-fatigue behaviour of two grain size variants of a nickel-based superalloy under cyclic loading at high temperatures in both air and corrosive environments. Test facilities were developed by Swansea University and Amec Foster Wheeler, to conduct fatigue and crack growth tests in corrosive environments. A salt deposition technique was implemented to replicate corrosion morphologies observed in service. It was concluded that fatigue life behaviour was dominated by initiation behaviour as baseline (1-1-1-1) crack growth rates from specimens tested in a corrosive environment showed little difference to specimens tested in air. Fatigue crack initiation appears to be related to a critical feature depth which can be achieved by corrosion pit growth in the appropriate environment. It was found that a large variation in fatigue life can be produced by influencing the initiation behaviour. For pre-corroded and fatigue-tested notched specimens, it was shown that wider notch geometries were more susceptible to attack and failure occurred preferentially at these features rather than adjacent, narrower notches with nominally similar stress concentration factors. Similarly on plain specimens, shorter lives were observed by increasing the initial salt loading level such that pit growth rates were increased. Such conditions presumably encouraged the earlier fulfilment of the apparent critical pit depth required for crack initiation and subsequent failure. &#xA9; Copyright 2015 MS&amp; T15&#xAE;.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Materials Science and Technology Conference and Exhibition 2015, MS and T 2015</journal><volume>1</volume><paginationStart>1209</paginationStart><paginationEnd>1223</paginationEnd><publisher/><placeOfPublication>USA</placeOfPublication><isbnPrint>978-151081393-9</isbnPrint><isbnElectronic>978-151081393-9</isbnElectronic><keywords>superalloys; fatigue crack propagation; nickel-based superalloy</keywords><publishedDay>0</publishedDay><publishedMonth>0</publishedMonth><publishedYear>0</publishedYear><publishedDate>0001-01-01</publishedDate><doi/><url>https://www.scopus.com/record/display.uri?eid=2-s2.0-84961171424&amp;amp;origin=inward&amp;amp;txGid=73013c1350c0c7eb4f103324a951e608</url><notes/><college>COLLEGE NANME</college><department>Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MECH</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-10-30T15:50:02.8578675</lastEdited><Created>2019-10-30T15:50:02.8578675</Created><authors><author><firstname>Hollie</firstname><surname>Cockings</surname><orcid>0000-0002-9745-4521</orcid><order>1</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2019-10-30T15:50:02.8578675 v2 52615 2019-10-30 Cyclic fatigue testing of a ni-based alloy in a corrosive environment c951e311ac85396c2bb8ed4153b19fde 0000-0002-9745-4521 Hollie Cockings Hollie Cockings true false 2019-10-30 MECH Operation of gas turbines at higher temperatures can improve fuel efficiency and reduce carbon emissions, but may also lead to increased corrosion of turbine materials. A program was designed to improve the understanding of corrosion-fatigue behaviour of two grain size variants of a nickel-based superalloy under cyclic loading at high temperatures in both air and corrosive environments. Test facilities were developed by Swansea University and Amec Foster Wheeler, to conduct fatigue and crack growth tests in corrosive environments. A salt deposition technique was implemented to replicate corrosion morphologies observed in service. It was concluded that fatigue life behaviour was dominated by initiation behaviour as baseline (1-1-1-1) crack growth rates from specimens tested in a corrosive environment showed little difference to specimens tested in air. Fatigue crack initiation appears to be related to a critical feature depth which can be achieved by corrosion pit growth in the appropriate environment. It was found that a large variation in fatigue life can be produced by influencing the initiation behaviour. For pre-corroded and fatigue-tested notched specimens, it was shown that wider notch geometries were more susceptible to attack and failure occurred preferentially at these features rather than adjacent, narrower notches with nominally similar stress concentration factors. Similarly on plain specimens, shorter lives were observed by increasing the initial salt loading level such that pit growth rates were increased. Such conditions presumably encouraged the earlier fulfilment of the apparent critical pit depth required for crack initiation and subsequent failure. © Copyright 2015 MS& T15®. Conference Paper/Proceeding/Abstract Materials Science and Technology Conference and Exhibition 2015, MS and T 2015 1 1209 1223 USA 978-151081393-9 978-151081393-9 superalloys; fatigue crack propagation; nickel-based superalloy 0 0 0 0001-01-01 https://www.scopus.com/record/display.uri?eid=2-s2.0-84961171424&amp;origin=inward&amp;txGid=73013c1350c0c7eb4f103324a951e608 COLLEGE NANME Mechanical Engineering COLLEGE CODE MECH Swansea University 2019-10-30T15:50:02.8578675 2019-10-30T15:50:02.8578675 Hollie Cockings 0000-0002-9745-4521 1
title Cyclic fatigue testing of a ni-based alloy in a corrosive environment
spellingShingle Cyclic fatigue testing of a ni-based alloy in a corrosive environment
Hollie Cockings
title_short Cyclic fatigue testing of a ni-based alloy in a corrosive environment
title_full Cyclic fatigue testing of a ni-based alloy in a corrosive environment
title_fullStr Cyclic fatigue testing of a ni-based alloy in a corrosive environment
title_full_unstemmed Cyclic fatigue testing of a ni-based alloy in a corrosive environment
title_sort Cyclic fatigue testing of a ni-based alloy in a corrosive environment
author_id_str_mv c951e311ac85396c2bb8ed4153b19fde
author_id_fullname_str_mv c951e311ac85396c2bb8ed4153b19fde_***_Hollie Cockings
author Hollie Cockings
author2 Hollie Cockings
format Conference Paper/Proceeding/Abstract
container_title Materials Science and Technology Conference and Exhibition 2015, MS and T 2015
container_volume 1
container_start_page 1209
institution Swansea University
isbn 978-151081393-9
978-151081393-9
url https://www.scopus.com/record/display.uri?eid=2-s2.0-84961171424&amp;origin=inward&amp;txGid=73013c1350c0c7eb4f103324a951e608
document_store_str 0
active_str 0
description Operation of gas turbines at higher temperatures can improve fuel efficiency and reduce carbon emissions, but may also lead to increased corrosion of turbine materials. A program was designed to improve the understanding of corrosion-fatigue behaviour of two grain size variants of a nickel-based superalloy under cyclic loading at high temperatures in both air and corrosive environments. Test facilities were developed by Swansea University and Amec Foster Wheeler, to conduct fatigue and crack growth tests in corrosive environments. A salt deposition technique was implemented to replicate corrosion morphologies observed in service. It was concluded that fatigue life behaviour was dominated by initiation behaviour as baseline (1-1-1-1) crack growth rates from specimens tested in a corrosive environment showed little difference to specimens tested in air. Fatigue crack initiation appears to be related to a critical feature depth which can be achieved by corrosion pit growth in the appropriate environment. It was found that a large variation in fatigue life can be produced by influencing the initiation behaviour. For pre-corroded and fatigue-tested notched specimens, it was shown that wider notch geometries were more susceptible to attack and failure occurred preferentially at these features rather than adjacent, narrower notches with nominally similar stress concentration factors. Similarly on plain specimens, shorter lives were observed by increasing the initial salt loading level such that pit growth rates were increased. Such conditions presumably encouraged the earlier fulfilment of the apparent critical pit depth required for crack initiation and subsequent failure. © Copyright 2015 MS& T15®.
published_date 0001-01-01T04:06:35Z
_version_ 1737027375743369216
score 10.87758