No Cover Image

Journal article 170 views 23 downloads

Liquid–liquid equilibrium in polymer–fullerene mixtures; an in situ neutron reflectivity study / Elizabeth Hynes, P. Gutfreund, A. J. Parnell, Anthony Higgins

Soft Matter, Volume: 16, Pages: 3727 - 3739

Swansea University Authors: Elizabeth Hynes, Anthony Higgins

  • 53337.pdf

    PDF | Version of Record

    Open Access Article This Open Access Article is licensed under a Creative Commons Attribution 3.0 Unported Licence

    Download (6.13MB)

Check full text

DOI (Published version): 10.1039/c9sm02337b

Abstract

The composition profiles of a series of model polystyrene/fullerene bilayers are measured, before, during and after thermal annealing, using in situ neutron reflectometry. In combination with grazing-incidence X-ray diffraction measurements, these experiments, which quantify layer compositions as a...

Full description

Published in: Soft Matter
ISSN: 1744-683X 1744-6848
Published: Royal Society of Chemistry (RSC) 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa53337
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: The composition profiles of a series of model polystyrene/fullerene bilayers are measured, before, during and after thermal annealing, using in situ neutron reflectometry. In combination with grazing-incidence X-ray diffraction measurements, these experiments, which quantify layer compositions as a function of molecular weight using changes in both scattering length density and layer thickness, extend and corroborate recent measurements on ex situ annealed samples and demonstrate that the composition profiles rapidly formed in these systems correspond to two co-existing liquid–liquid phases in thermodynamic equilibrium. The measurements also demonstrate a clear and systematic onset temperature for diffusion of the fullerenes into the PS layer that correlates with the known glass-transition temperatures of both the polymer (as a function of molecular weight) and the fullerene, revealing that the molecular mobility of the fullerenes in these systems is controlled by the intrinsic mobility of the fullerenes themselves and the ability of the polymer to plasticise the fullerenes at the interface. Over the temperature range investigated (up to 145 °C), measurements of equilibrated composition profiles as a function of temperature (during gradual cooling) reveal no significant changes in composition profile, other than those associated with the known thermal expansion/contraction of polystyrene thin-films.
Start Page: 3727
End Page: 3739