Journal article 1185 views 149 downloads
The effect of phase angle on crack growth mechanisms under thermo-mechanical fatigue loading
International Journal of Fatigue, Volume: 135, Start page: 105539
Swansea University Authors: Mark Whittaker , Robert Lancaster
-
PDF | Accepted Manuscript
Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).
Download (2.53MB)
DOI (Published version): 10.1016/j.ijfatigue.2020.105539
Abstract
The current paper describes TMF crack growth behaviour in an advanced nickel-based superalloy. Changes in behaviour are examined which occur as a function of the phase angle between applied stress and temperature. The fractography of the failed specimens reveals changes from transgranular to intergr...
Published in: | International Journal of Fatigue |
---|---|
ISSN: | 0142-1123 |
Published: |
Elsevier BV
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa53617 |
Abstract: |
The current paper describes TMF crack growth behaviour in an advanced nickel-based superalloy. Changes in behaviour are examined which occur as a function of the phase angle between applied stress and temperature. The fractography of the failed specimens reveals changes from transgranular to intergranular growth between high and low phase angle tests as a result of the onset of high temperature damage mechanisms. More targeted testing has also been undertaken to isolate the contributions of these mechanisms, with specific transitions in behaviour becoming clear in 90° diamond cycles, where dynamic crack growth and oxidation strongly interact. |
---|---|
Keywords: |
Thermo-mechanical fatigue, phase angle, creep, oxidation |
Start Page: |
105539 |