Journal article 1298 views 163 downloads
The effect of phase angle on crack growth mechanisms under thermo-mechanical fatigue loading
International Journal of Fatigue, Volume: 135, Start page: 105539
Swansea University Authors:
Mark Whittaker , Robert Lancaster
-
PDF | Accepted Manuscript
Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).
Download (2.53MB)
DOI (Published version): 10.1016/j.ijfatigue.2020.105539
Abstract
The current paper describes TMF crack growth behaviour in an advanced nickel-based superalloy. Changes in behaviour are examined which occur as a function of the phase angle between applied stress and temperature. The fractography of the failed specimens reveals changes from transgranular to intergr...
Published in: | International Journal of Fatigue |
---|---|
ISSN: | 0142-1123 1879-3452 |
Published: |
Elsevier BV
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa53617 |
first_indexed |
2020-02-21T13:49:58Z |
---|---|
last_indexed |
2025-03-05T05:03:26Z |
id |
cronfa53617 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2025-03-04T11:35:07.7080936</datestamp><bib-version>v2</bib-version><id>53617</id><entry>2020-02-21</entry><title>The effect of phase angle on crack growth mechanisms under thermo-mechanical fatigue loading</title><swanseaauthors><author><sid>a146c6d442cb2c466d096179f9ac97ca</sid><ORCID>0000-0002-5854-0726</ORCID><firstname>Mark</firstname><surname>Whittaker</surname><name>Mark Whittaker</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e1a1b126acd3e4ff734691ec34967f29</sid><ORCID>0000-0002-1365-6944</ORCID><firstname>Robert</firstname><surname>Lancaster</surname><name>Robert Lancaster</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-02-21</date><deptcode>EAAS</deptcode><abstract>The current paper describes TMF crack growth behaviour in an advanced nickel-based superalloy. Changes in behaviour are examined which occur as a function of the phase angle between applied stress and temperature. The fractography of the failed specimens reveals changes from transgranular to intergranular growth between high and low phase angle tests as a result of the onset of high temperature damage mechanisms. More targeted testing has also been undertaken to isolate the contributions of these mechanisms, with specific transitions in behaviour becoming clear in 90° diamond cycles, where dynamic crack growth and oxidation strongly interact.</abstract><type>Journal Article</type><journal>International Journal of Fatigue</journal><volume>135</volume><journalNumber/><paginationStart>105539</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0142-1123</issnPrint><issnElectronic>1879-3452</issnElectronic><keywords>Thermo-mechanical fatigue; Phase angle; Creep; Oxidation</keywords><publishedDay>1</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-06-01</publishedDate><doi>10.1016/j.ijfatigue.2020.105539</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>This project has received funding from the European Union’s Horizon 2020 research and innovation programme and Joint Undertaking Clean Sky 2 under grant agreement No 686600. The authors are also grateful for the supply of material and input from Rolls-Royce plc.</funders><projectreference/><lastEdited>2025-03-04T11:35:07.7080936</lastEdited><Created>2020-02-21T11:20:31.9855932</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>J.</firstname><surname>Jones</surname><order>1</order></author><author><firstname>Mark</firstname><surname>Whittaker</surname><orcid>0000-0002-5854-0726</orcid><order>2</order></author><author><firstname>Robert</firstname><surname>Lancaster</surname><orcid>0000-0002-1365-6944</orcid><order>3</order></author><author><firstname>C.</firstname><surname>Hyde</surname><order>4</order></author><author><firstname>J.</firstname><surname>Rouse</surname><order>5</order></author><author><firstname>B.</firstname><surname>Engel</surname><order>6</order></author><author><firstname>S.</firstname><surname>Pattison</surname><order>7</order></author><author><firstname>S.</firstname><surname>Stekovic</surname><order>8</order></author><author><firstname>C.</firstname><surname>Jackson</surname><order>9</order></author><author><firstname>H.Y.</firstname><surname>Li</surname><order>10</order></author></authors><documents><document><filename>53617__16659__5148e7e28fda4145a5d4531155fddfac.pdf</filename><originalFilename>jones2020(2).pdf</originalFilename><uploaded>2020-02-21T11:22:25.6575490</uploaded><type>Output</type><contentLength>2648900</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-02-16T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2025-03-04T11:35:07.7080936 v2 53617 2020-02-21 The effect of phase angle on crack growth mechanisms under thermo-mechanical fatigue loading a146c6d442cb2c466d096179f9ac97ca 0000-0002-5854-0726 Mark Whittaker Mark Whittaker true false e1a1b126acd3e4ff734691ec34967f29 0000-0002-1365-6944 Robert Lancaster Robert Lancaster true false 2020-02-21 EAAS The current paper describes TMF crack growth behaviour in an advanced nickel-based superalloy. Changes in behaviour are examined which occur as a function of the phase angle between applied stress and temperature. The fractography of the failed specimens reveals changes from transgranular to intergranular growth between high and low phase angle tests as a result of the onset of high temperature damage mechanisms. More targeted testing has also been undertaken to isolate the contributions of these mechanisms, with specific transitions in behaviour becoming clear in 90° diamond cycles, where dynamic crack growth and oxidation strongly interact. Journal Article International Journal of Fatigue 135 105539 Elsevier BV 0142-1123 1879-3452 Thermo-mechanical fatigue; Phase angle; Creep; Oxidation 1 6 2020 2020-06-01 10.1016/j.ijfatigue.2020.105539 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University Not Required This project has received funding from the European Union’s Horizon 2020 research and innovation programme and Joint Undertaking Clean Sky 2 under grant agreement No 686600. The authors are also grateful for the supply of material and input from Rolls-Royce plc. 2025-03-04T11:35:07.7080936 2020-02-21T11:20:31.9855932 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering J. Jones 1 Mark Whittaker 0000-0002-5854-0726 2 Robert Lancaster 0000-0002-1365-6944 3 C. Hyde 4 J. Rouse 5 B. Engel 6 S. Pattison 7 S. Stekovic 8 C. Jackson 9 H.Y. Li 10 53617__16659__5148e7e28fda4145a5d4531155fddfac.pdf jones2020(2).pdf 2020-02-21T11:22:25.6575490 Output 2648900 application/pdf Accepted Manuscript true 2021-02-16T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng http://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
The effect of phase angle on crack growth mechanisms under thermo-mechanical fatigue loading |
spellingShingle |
The effect of phase angle on crack growth mechanisms under thermo-mechanical fatigue loading Mark Whittaker Robert Lancaster |
title_short |
The effect of phase angle on crack growth mechanisms under thermo-mechanical fatigue loading |
title_full |
The effect of phase angle on crack growth mechanisms under thermo-mechanical fatigue loading |
title_fullStr |
The effect of phase angle on crack growth mechanisms under thermo-mechanical fatigue loading |
title_full_unstemmed |
The effect of phase angle on crack growth mechanisms under thermo-mechanical fatigue loading |
title_sort |
The effect of phase angle on crack growth mechanisms under thermo-mechanical fatigue loading |
author_id_str_mv |
a146c6d442cb2c466d096179f9ac97ca e1a1b126acd3e4ff734691ec34967f29 |
author_id_fullname_str_mv |
a146c6d442cb2c466d096179f9ac97ca_***_Mark Whittaker e1a1b126acd3e4ff734691ec34967f29_***_Robert Lancaster |
author |
Mark Whittaker Robert Lancaster |
author2 |
J. Jones Mark Whittaker Robert Lancaster C. Hyde J. Rouse B. Engel S. Pattison S. Stekovic C. Jackson H.Y. Li |
format |
Journal article |
container_title |
International Journal of Fatigue |
container_volume |
135 |
container_start_page |
105539 |
publishDate |
2020 |
institution |
Swansea University |
issn |
0142-1123 1879-3452 |
doi_str_mv |
10.1016/j.ijfatigue.2020.105539 |
publisher |
Elsevier BV |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering |
document_store_str |
1 |
active_str |
0 |
description |
The current paper describes TMF crack growth behaviour in an advanced nickel-based superalloy. Changes in behaviour are examined which occur as a function of the phase angle between applied stress and temperature. The fractography of the failed specimens reveals changes from transgranular to intergranular growth between high and low phase angle tests as a result of the onset of high temperature damage mechanisms. More targeted testing has also been undertaken to isolate the contributions of these mechanisms, with specific transitions in behaviour becoming clear in 90° diamond cycles, where dynamic crack growth and oxidation strongly interact. |
published_date |
2020-06-01T07:42:14Z |
_version_ |
1828906267520794624 |
score |
11.057067 |