No Cover Image

Journal article 226 views 120 downloads

Adsorption of Lead Ions by a Green AC/HKUST-1 Nanocomposite

Paria Soleimani Abhari, Faranak Manteghi, Zari Tehrani Orcid Logo

Nanomaterials, Volume: 10, Issue: 9, Start page: 1647

Swansea University Author: Zari Tehrani Orcid Logo

  • 55193.pdf

    PDF | Version of Record

    © 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 (CC BY) License

    Download (3.84MB)

Check full text

DOI (Published version): 10.3390/nano10091647

Abstract

A new nanocomposite consisting of activated carbon (AC) from the Cortaderia selloana flower and copper-based metal-organic framework (HKUST-1) was synthesized through a single-step solvothermal method and applied for the removal of lead ions from aqueous solution through adsorption. The nanocomposit...

Full description

Published in: Nanomaterials
ISSN: 2079-4991
Published: MDPI AG 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa55193
Abstract: A new nanocomposite consisting of activated carbon (AC) from the Cortaderia selloana flower and copper-based metal-organic framework (HKUST-1) was synthesized through a single-step solvothermal method and applied for the removal of lead ions from aqueous solution through adsorption. The nanocomposite, AC/HKUST-1, was characterized by Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and Energy-Dispersive X-ray Spectroscopy (EDX) methods. The SEM images of both HKUST-1 and AC/HKUST-1 contain octahedral crystals. Different factors affecting adsorption processes, such as solution pH, contact time, adsorbent dose, and initial metal pollution concentration, were studied. The adsorption isotherm was evaluated with Freundlich and Langmuir models, and the latter was fitted with the experimental data on adsorption of lead ion. The adsorption capacity was 249.4 mg g−1 for 15 min at pH 6.1, which is an excellent result rivalling previously reported lead adsorbents considering the conditions. These nanocomposites show considerable potential for use as a functional material in the ink formulation of lead sensors.
Keywords: metal organic framework; active carbon; heavy metal; low-cost adsorbents; lead sensor; Cortaderia selloana
College: Faculty of Science and Engineering
Issue: 9
Start Page: 1647