Journal article 581 views 302 downloads
Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer’s Disease
Cell Reports Medicine, Volume: 1, Issue: 8, Start page: 100138
Swansea University Author: William Griffiths
-
PDF | Author's Original
Download (722.76KB) -
PDF | Version of Record
©2020 The Authors. This is an open access article under the CC BY-NC-ND license
Download (4.04MB)
DOI (Published version): 10.1016/j.xcrm.2020.100138
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia, with metabolic dysfunction seen years before the emergence of clinical symptoms. Increasing evidence suggests a role for primary and secondary bile acids, the end-product of cholesterol metabolism, influencing pathophysiology in AD. In this...
Published in: | Cell Reports Medicine |
---|---|
ISSN: | 2666-3791 |
Published: |
Elsevier BV
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa55544 |
first_indexed |
2020-10-29T08:55:01Z |
---|---|
last_indexed |
2021-11-27T04:10:40Z |
id |
cronfa55544 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-11-26T08:57:47.9077393</datestamp><bib-version>v2</bib-version><id>55544</id><entry>2020-10-28</entry><title>Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer’s Disease</title><swanseaauthors><author><sid>3316b1d1b524be1831790933eed1c26e</sid><ORCID>0000-0002-4129-6616</ORCID><firstname>William</firstname><surname>Griffiths</surname><name>William Griffiths</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-10-28</date><deptcode>MEDS</deptcode><abstract>Alzheimer’s disease (AD) is the leading cause of dementia, with metabolic dysfunction seen years before the emergence of clinical symptoms. Increasing evidence suggests a role for primary and secondary bile acids, the end-product of cholesterol metabolism, influencing pathophysiology in AD. In this study, we analyzed transcriptomes from 2114 post-mortem brain samples from three independent cohorts and identified that the genes involved in the alternative bile acid synthesis pathway were expressed in the brain compared to the classical pathway. These results were supported by targeted metabolomic analysis of primary and secondary bile acids measured from post-mortem brain samples of 111 individuals. We reconstructed brain region-specific metabolic networks using data from three independent cohorts to assess the role of bile acid metabolism in AD pathophysiology. Our metabolic network analysis suggested that taurine transport, bile acid synthesis and cholesterol metabolism differed in AD and cognitively normal individuals. Using the brain transcriptional regulatory network, we identified putative transcription factors regulating these metabolic genes and influencing altered metabolism in AD. Intriguingly, we find bile acids from the brain metabolomics whose synthesis cannot be explained by enzymes we find in the brain, suggesting they may originate from an external source such as the gut microbiome. These findings motivate further research into bile acid metabolism and transport in AD to elucidate their possible connection to cognitive decline.</abstract><type>Journal Article</type><journal>Cell Reports Medicine</journal><volume>1</volume><journalNumber>8</journalNumber><paginationStart>100138</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2666-3791</issnPrint><issnElectronic/><keywords>Alzheimer&apos;s disease; bile acids; cholesterol metabolism; transcriptomics; metabolomics; genome-scale metabolic models; transcriptional regulatory networks</keywords><publishedDay>17</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-11-17</publishedDate><doi>10.1016/j.xcrm.2020.100138</doi><url/><notes/><college>COLLEGE NANME</college><department>Medical School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>BBSRC</funders><projectreference>BB/I001735/1, BB/N015932/1</projectreference><lastEdited>2021-11-26T08:57:47.9077393</lastEdited><Created>2020-10-28T17:41:35.4526260</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>Priyanka</firstname><surname>Baloni</surname><order>1</order></author><author><firstname>Cory C.</firstname><surname>Funk</surname><order>2</order></author><author><firstname>Jingwen</firstname><surname>Yan</surname><order>3</order></author><author><firstname>James T.</firstname><surname>Yurkovich</surname><order>4</order></author><author><firstname>Alexandra</firstname><surname>Kueider-Paisley</surname><order>5</order></author><author><firstname>Kwangsik</firstname><surname>Nho</surname><order>6</order></author><author><firstname>Almut</firstname><surname>Heinken</surname><order>7</order></author><author><firstname>Wei</firstname><surname>Jia</surname><order>8</order></author><author><firstname>Siamak</firstname><surname>Mahmoudiandehkordi</surname><order>9</order></author><author><firstname>Gregory</firstname><surname>Louie</surname><order>10</order></author><author><firstname>Andrew J.</firstname><surname>Saykin</surname><order>11</order></author><author><firstname>Matthias</firstname><surname>Arnold</surname><order>12</order></author><author><firstname>Gabi</firstname><surname>Kastenmüller</surname><order>13</order></author><author><firstname>William</firstname><surname>Griffiths</surname><orcid>0000-0002-4129-6616</orcid><order>14</order></author><author><firstname>Ines</firstname><surname>Thiele</surname><order>15</order></author><author><firstname>Rima</firstname><surname>Kaddurah-Daouk</surname><order>16</order></author><author><firstname>Nathan D.</firstname><surname>Price</surname><order>17</order></author><author><firstname>Rima</firstname><surname>Kaddurah-Daouk</surname><order>18</order></author><author><firstname>Alexandra</firstname><surname>Kueider-Paisley</surname><order>19</order></author><author><firstname>Gregory</firstname><surname>Louie</surname><order>20</order></author><author><firstname>P. Murali</firstname><surname>Doraiswamy</surname><order>21</order></author><author><firstname>Colette</firstname><surname>Blach</surname><order>22</order></author><author><firstname>Arthur</firstname><surname>Moseley</surname><order>23</order></author><author><firstname>J. Will</firstname><surname>Thompson</surname><order>24</order></author><author><firstname>Siamak</firstname><surname>Mahmoudiandehkhordi</surname><order>25</order></author><author><firstname>Kathleen</firstname><surname>Welsh-Balmer</surname><order>26</order></author><author><firstname>Brenda</firstname><surname>Plassman</surname><order>27</order></author><author><firstname>Andrew</firstname><surname>Saykin</surname><order>28</order></author><author><firstname>Kwangsik</firstname><surname>Nho</surname><order>29</order></author><author><firstname>Gabi</firstname><surname>Kastenmüller</surname><order>30</order></author><author><firstname>Matthias</firstname><surname>Arnold</surname><order>31</order></author><author><firstname>Sudeepa</firstname><surname>Bhattacharyya</surname><order>32</order></author><author><firstname>Xianlin</firstname><surname>Han</surname><order>33</order></author><author><firstname>Rebecca</firstname><surname>Baillie</surname><order>34</order></author><author><firstname>Oliver</firstname><surname>Fiehn</surname><order>35</order></author><author><firstname>Dinesh</firstname><surname>Barupal</surname><order>36</order></author><author><firstname>Peter</firstname><surname>Meikle</surname><order>37</order></author><author><firstname>Sarkis</firstname><surname>Mazmanian</surname><order>38</order></author><author><firstname>Mitchel</firstname><surname>Kling</surname><order>39</order></author><author><firstname>Leslie</firstname><surname>Shaw</surname><order>40</order></author><author><firstname>John</firstname><surname>Trojanowski</surname><order>41</order></author><author><firstname>Jon</firstname><surname>Toledo</surname><order>42</order></author><author><firstname>Cornelia van</firstname><surname>Duijin</surname><order>43</order></author><author><firstname>Thomas</firstname><surname>Hankemier</surname><order>44</order></author><author><firstname>Ines</firstname><surname>Thiele</surname><order>45</order></author><author><firstname>Almut</firstname><surname>Heinken</surname><order>46</order></author><author><firstname>Nathan</firstname><surname>Price</surname><order>47</order></author><author><firstname>Cory</firstname><surname>Funk</surname><order>48</order></author><author><firstname>Priyanka</firstname><surname>Baloni</surname><order>49</order></author><author><firstname>Wei</firstname><surname>Jia</surname><order>50</order></author><author><firstname>David</firstname><surname>Wishart</surname><order>51</order></author><author><firstname>Roberta</firstname><surname>Brinton</surname><order>52</order></author><author><firstname>Rui</firstname><surname>Chang</surname><order>53</order></author><author><firstname>Lindsay</firstname><surname>Farrer</surname><order>54</order></author><author><firstname>Rhoda</firstname><surname>Au</surname><order>55</order></author><author><firstname>Wendy</firstname><surname>Qiu</surname><order>56</order></author><author><firstname>Peter</firstname><surname>Würtz</surname><order>57</order></author><author><firstname>Lara</firstname><surname>Mangravite</surname><order>58</order></author><author><firstname>Jan</firstname><surname>Krumsiek</surname><order>59</order></author><author><firstname>John</firstname><surname>Newman</surname><order>60</order></author><author><firstname>Bin</firstname><surname>Zhang</surname><order>61</order></author><author><firstname>Herman</firstname><surname>Moreno</surname><order>62</order></author></authors><documents><document><filename>55544__18526__a8ab25f1f332428594327cdb13c891eb.pdf</filename><originalFilename>200611_Baloni-Cell Reports Medicine-Paper_revised-final (2).docx</originalFilename><uploaded>2020-10-29T08:52:48.6816207</uploaded><type>Output</type><contentLength>2402376</contentLength><contentType>application/vnd.openxmlformats-officedocument.wordprocessingml.document</contentType><version>Author's Original</version><cronfaStatus>true</cronfaStatus><copyrightCorrect>false</copyrightCorrect></document><document><filename>55544__18682__e847cba5b9cd4fe7bf247020a68b8c04.pdf</filename><originalFilename>mmc15.pdf</originalFilename><uploaded>2020-11-18T08:49:45.4961674</uploaded><type>Output</type><contentLength>4236328</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>©2020 The Authors. This is an open access article under the CC BY-NC-ND license</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-11-26T08:57:47.9077393 v2 55544 2020-10-28 Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer’s Disease 3316b1d1b524be1831790933eed1c26e 0000-0002-4129-6616 William Griffiths William Griffiths true false 2020-10-28 MEDS Alzheimer’s disease (AD) is the leading cause of dementia, with metabolic dysfunction seen years before the emergence of clinical symptoms. Increasing evidence suggests a role for primary and secondary bile acids, the end-product of cholesterol metabolism, influencing pathophysiology in AD. In this study, we analyzed transcriptomes from 2114 post-mortem brain samples from three independent cohorts and identified that the genes involved in the alternative bile acid synthesis pathway were expressed in the brain compared to the classical pathway. These results were supported by targeted metabolomic analysis of primary and secondary bile acids measured from post-mortem brain samples of 111 individuals. We reconstructed brain region-specific metabolic networks using data from three independent cohorts to assess the role of bile acid metabolism in AD pathophysiology. Our metabolic network analysis suggested that taurine transport, bile acid synthesis and cholesterol metabolism differed in AD and cognitively normal individuals. Using the brain transcriptional regulatory network, we identified putative transcription factors regulating these metabolic genes and influencing altered metabolism in AD. Intriguingly, we find bile acids from the brain metabolomics whose synthesis cannot be explained by enzymes we find in the brain, suggesting they may originate from an external source such as the gut microbiome. These findings motivate further research into bile acid metabolism and transport in AD to elucidate their possible connection to cognitive decline. Journal Article Cell Reports Medicine 1 8 100138 Elsevier BV 2666-3791 Alzheimer's disease; bile acids; cholesterol metabolism; transcriptomics; metabolomics; genome-scale metabolic models; transcriptional regulatory networks 17 11 2020 2020-11-17 10.1016/j.xcrm.2020.100138 COLLEGE NANME Medical School COLLEGE CODE MEDS Swansea University BBSRC BB/I001735/1, BB/N015932/1 2021-11-26T08:57:47.9077393 2020-10-28T17:41:35.4526260 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine Priyanka Baloni 1 Cory C. Funk 2 Jingwen Yan 3 James T. Yurkovich 4 Alexandra Kueider-Paisley 5 Kwangsik Nho 6 Almut Heinken 7 Wei Jia 8 Siamak Mahmoudiandehkordi 9 Gregory Louie 10 Andrew J. Saykin 11 Matthias Arnold 12 Gabi Kastenmüller 13 William Griffiths 0000-0002-4129-6616 14 Ines Thiele 15 Rima Kaddurah-Daouk 16 Nathan D. Price 17 Rima Kaddurah-Daouk 18 Alexandra Kueider-Paisley 19 Gregory Louie 20 P. Murali Doraiswamy 21 Colette Blach 22 Arthur Moseley 23 J. Will Thompson 24 Siamak Mahmoudiandehkhordi 25 Kathleen Welsh-Balmer 26 Brenda Plassman 27 Andrew Saykin 28 Kwangsik Nho 29 Gabi Kastenmüller 30 Matthias Arnold 31 Sudeepa Bhattacharyya 32 Xianlin Han 33 Rebecca Baillie 34 Oliver Fiehn 35 Dinesh Barupal 36 Peter Meikle 37 Sarkis Mazmanian 38 Mitchel Kling 39 Leslie Shaw 40 John Trojanowski 41 Jon Toledo 42 Cornelia van Duijin 43 Thomas Hankemier 44 Ines Thiele 45 Almut Heinken 46 Nathan Price 47 Cory Funk 48 Priyanka Baloni 49 Wei Jia 50 David Wishart 51 Roberta Brinton 52 Rui Chang 53 Lindsay Farrer 54 Rhoda Au 55 Wendy Qiu 56 Peter Würtz 57 Lara Mangravite 58 Jan Krumsiek 59 John Newman 60 Bin Zhang 61 Herman Moreno 62 55544__18526__a8ab25f1f332428594327cdb13c891eb.pdf 200611_Baloni-Cell Reports Medicine-Paper_revised-final (2).docx 2020-10-29T08:52:48.6816207 Output 2402376 application/vnd.openxmlformats-officedocument.wordprocessingml.document Author's Original true false 55544__18682__e847cba5b9cd4fe7bf247020a68b8c04.pdf mmc15.pdf 2020-11-18T08:49:45.4961674 Output 4236328 application/pdf Version of Record true ©2020 The Authors. This is an open access article under the CC BY-NC-ND license true eng http://creativecommons.org/licenses/by-nc-nd/4.0/ |
title |
Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer’s Disease |
spellingShingle |
Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer’s Disease William Griffiths |
title_short |
Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer’s Disease |
title_full |
Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer’s Disease |
title_fullStr |
Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer’s Disease |
title_full_unstemmed |
Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer’s Disease |
title_sort |
Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer’s Disease |
author_id_str_mv |
3316b1d1b524be1831790933eed1c26e |
author_id_fullname_str_mv |
3316b1d1b524be1831790933eed1c26e_***_William Griffiths |
author |
William Griffiths |
author2 |
Priyanka Baloni Cory C. Funk Jingwen Yan James T. Yurkovich Alexandra Kueider-Paisley Kwangsik Nho Almut Heinken Wei Jia Siamak Mahmoudiandehkordi Gregory Louie Andrew J. Saykin Matthias Arnold Gabi Kastenmüller William Griffiths Ines Thiele Rima Kaddurah-Daouk Nathan D. Price Rima Kaddurah-Daouk Alexandra Kueider-Paisley Gregory Louie P. Murali Doraiswamy Colette Blach Arthur Moseley J. Will Thompson Siamak Mahmoudiandehkhordi Kathleen Welsh-Balmer Brenda Plassman Andrew Saykin Kwangsik Nho Gabi Kastenmüller Matthias Arnold Sudeepa Bhattacharyya Xianlin Han Rebecca Baillie Oliver Fiehn Dinesh Barupal Peter Meikle Sarkis Mazmanian Mitchel Kling Leslie Shaw John Trojanowski Jon Toledo Cornelia van Duijin Thomas Hankemier Ines Thiele Almut Heinken Nathan Price Cory Funk Priyanka Baloni Wei Jia David Wishart Roberta Brinton Rui Chang Lindsay Farrer Rhoda Au Wendy Qiu Peter Würtz Lara Mangravite Jan Krumsiek John Newman Bin Zhang Herman Moreno |
format |
Journal article |
container_title |
Cell Reports Medicine |
container_volume |
1 |
container_issue |
8 |
container_start_page |
100138 |
publishDate |
2020 |
institution |
Swansea University |
issn |
2666-3791 |
doi_str_mv |
10.1016/j.xcrm.2020.100138 |
publisher |
Elsevier BV |
college_str |
Faculty of Medicine, Health and Life Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofmedicinehealthandlifesciences |
hierarchy_top_title |
Faculty of Medicine, Health and Life Sciences |
hierarchy_parent_id |
facultyofmedicinehealthandlifesciences |
hierarchy_parent_title |
Faculty of Medicine, Health and Life Sciences |
department_str |
Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine |
document_store_str |
1 |
active_str |
0 |
description |
Alzheimer’s disease (AD) is the leading cause of dementia, with metabolic dysfunction seen years before the emergence of clinical symptoms. Increasing evidence suggests a role for primary and secondary bile acids, the end-product of cholesterol metabolism, influencing pathophysiology in AD. In this study, we analyzed transcriptomes from 2114 post-mortem brain samples from three independent cohorts and identified that the genes involved in the alternative bile acid synthesis pathway were expressed in the brain compared to the classical pathway. These results were supported by targeted metabolomic analysis of primary and secondary bile acids measured from post-mortem brain samples of 111 individuals. We reconstructed brain region-specific metabolic networks using data from three independent cohorts to assess the role of bile acid metabolism in AD pathophysiology. Our metabolic network analysis suggested that taurine transport, bile acid synthesis and cholesterol metabolism differed in AD and cognitively normal individuals. Using the brain transcriptional regulatory network, we identified putative transcription factors regulating these metabolic genes and influencing altered metabolism in AD. Intriguingly, we find bile acids from the brain metabolomics whose synthesis cannot be explained by enzymes we find in the brain, suggesting they may originate from an external source such as the gut microbiome. These findings motivate further research into bile acid metabolism and transport in AD to elucidate their possible connection to cognitive decline. |
published_date |
2020-11-17T07:58:20Z |
_version_ |
1822025686262480896 |
score |
11.085372 |