No Cover Image

Journal article 21894 views 404 downloads

Statistical characterization and reconstruction of heterogeneous microstructures using deep neural network

Jinlong Fu, Shaoqing Cui, Song Cen, Chenfeng Li Orcid Logo

Computer Methods in Applied Mechanics and Engineering, Volume: 373, Start page: 113516

Swansea University Authors: Shaoqing Cui, Chenfeng Li Orcid Logo

  • 55670.pdf

    PDF | Accepted Manuscript

    © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

    Download (40.98MB)

Abstract

Heterogeneous materials, whether natural or artificial, are usually composed of distinct constituents present in complex microstructures with discontinuous, irregular and hierarchical characteristics. For many heterogeneous materials, such as porous media and composites, the microstructural features...

Full description

Published in: Computer Methods in Applied Mechanics and Engineering
ISSN: 0045-7825
Published: Elsevier BV 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa55670
Abstract: Heterogeneous materials, whether natural or artificial, are usually composed of distinct constituents present in complex microstructures with discontinuous, irregular and hierarchical characteristics. For many heterogeneous materials, such as porous media and composites, the microstructural features are of fundamental importance for their macroscopic properties. This paper presents a novel method to statistically characterize and reconstruct random microstructures through a deep neural network (DNN) model, which can be used to study the microstructure–property relationships. In our method, the digital microstructure image is assumed to be a stationary Markov random field (MRF), and local patterns covering the basic morphological features are collected to train a DNN model, after which statistically equivalent samples can be generated through a DNN-guided reconstruction procedure. Furthermore, to overcome the short-distance limitation associated with the MRF assumption, a multi-level approach is developed to preserve the long-distance morphological features of heterogeneous microstructures. A large number of tests have been conducted to compare the reconstructed and target microstructures in both morphological characteristics and physical properties, and good agreements are observed in all test cases. The proposed method is efficient, accurate, versatile, and especially beneficial to the statistical reconstruction of 2D/3D microstructures with long-distance correlations.
Keywords: Heterogeneous material, Random microstructure, Characterization and reconstruction, Statistical equivalence, Physical property
College: Faculty of Science and Engineering
Start Page: 113516