No Cover Image

Journal article 161 views 5 downloads

The correlation between statistical descriptors of heterogeneous materials

Shaoqing Cui, Jinlong Fu Orcid Logo, Song Cen, Hywel Thomas Orcid Logo, Chenfeng Li Orcid Logo

Computer Methods in Applied Mechanics and Engineering, Volume: 384, Start page: 113948

Swansea University Authors: Shaoqing Cui, Jinlong Fu Orcid Logo, Hywel Thomas Orcid Logo, Chenfeng Li Orcid Logo

  • 57162.pdf

    PDF | Accepted Manuscript

    Released under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License

    Download (1.47MB)

Abstract

Heterogeneous materials such as rocks and composites are comprised of multiple material phases of different sizes and shapes that are randomly distributed through the medium. The random microstructure is typically described by using various statistical descriptors, which include volume fraction, two...

Full description

Published in: Computer Methods in Applied Mechanics and Engineering
ISSN: 0045-7825
Published: Elsevier BV 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa57162
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Heterogeneous materials such as rocks and composites are comprised of multiple material phases of different sizes and shapes that are randomly distributed through the medium. The random microstructure is typically described by using various statistical descriptors, which include volume fraction, two-point correlation function, and tortuosity, to name a few. Capturing different morphological features, a large number of statistical descriptors are proposed in different research fields, such as material science, geoscience and computational engineering. It is well known that these statistical descriptors are not independent from each other, but until recently it remains unclear what descriptors are more similar or more different. In particular, it is extremely difficult to look for quantified relations between various descriptors, since they are often defined in very different formats. The lack of quantified understanding of descriptors’ relations can cause uncertainties or even systematic errors in heterogeneous materials studies. To address this issue, we propose a novel and generic correlation analysis strategy and establish, for the first time, the quantified relations between various statistical descriptors for heterogeneous materials. Based on data science techniques, our approach consists of three operational steps: data regularization, dimension reduction and correlation analysis. A total of 41 statistical descriptors are collected and analysed in this study, which is readily extensible to include other new descriptors. The generic and quantified correlation results are compared with other established descriptor relations that are obtained from analytical analysis or physical intuition, and good agreements are observed in all cases. The quantified relations between various descriptors are summarized in a single correlation graph, which provides useful guiding information for the characterization, reconstruction and property prediction of heterogeneous materials.
Keywords: Heterogeneous material, Random media, Morphology, Characterization, Reconstruction, Property prediction
College: College of Engineering
Start Page: 113948