No Cover Image

Journal article 760 views 87 downloads

Coupled thermal-structural modelling and experimental validation of spiral mandrel die

Yi Nie Orcid Logo, Ian Cameron, Johann Sienz Orcid Logo, Yueh-Jaw Lin, Wei Sun

The International Journal of Advanced Manufacturing Technology, Volume: 111, Issue: 11-12, Pages: 3047 - 3061

Swansea University Authors: Yi Nie Orcid Logo, Ian Cameron, Johann Sienz Orcid Logo

  • 55701.pdf

    PDF | Version of Record

    This article is licensed under a Creative Commons Attribution 4.0 International License

    Download (3.42MB)

Abstract

The conventional theoretical method to calculate deformations and stress states is only limited to a few cases of simple extrusion dies due to a number of assumptions and simplifications. A coupled thermal-structural modelling framework incorporating finite element method is thus developed and imple...

Full description

Published in: The International Journal of Advanced Manufacturing Technology
ISSN: 0268-3768 1433-3015
Published: Springer Science and Business Media LLC 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa55701
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2020-11-19T11:06:33Z
last_indexed 2021-01-13T04:20:20Z
id cronfa55701
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-01-12T13:59:04.7663436</datestamp><bib-version>v2</bib-version><id>55701</id><entry>2020-11-19</entry><title>Coupled thermal-structural modelling and experimental validation of spiral mandrel die</title><swanseaauthors><author><sid>7dca95e046be586bb00401b2615b9fe9</sid><ORCID>0000-0002-1271-9595</ORCID><firstname>Yi</firstname><surname>Nie</surname><name>Yi Nie</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>fcad3a814395fc2bdab4e34d09a28014</sid><ORCID/><firstname>Ian</firstname><surname>Cameron</surname><name>Ian Cameron</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>17bf1dd287bff2cb01b53d98ceb28a31</sid><ORCID>0000-0003-3136-5718</ORCID><firstname>Johann</firstname><surname>Sienz</surname><name>Johann Sienz</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-11-19</date><deptcode>AERO</deptcode><abstract>The conventional theoretical method to calculate deformations and stress states is only limited to a few cases of simple extrusion dies due to a number of assumptions and simplifications. A coupled thermal-structural modelling framework incorporating finite element method is thus developed and implemented to determine the mechanical performances of the complicated spiral mandrel die, which has a complex geometrical feature of spiral grooves and is exposed to severe conditions of thermal load and high pressure. The steady-state thermal analysis is carried out by mapping the temperature load on the flow channel from previously simulated flow characteristics of polymer melt. The structural analysis takes inputs from both thermal analysis and previously simulated pressure on polymer melt. Both the temperature and pressure loads on flow channel are transferred via the Smart Bucket Surface mapping algorithm. The mechanical properties of the spiral mandrel die are evaluated by analysing the deformation and stress distribution. The experimental validation is conducted to demonstrate the effectiveness of the numerical model. The effects of both structure parameters of the spiral mandrel and processing parameters upon the maximum stress in the die body and the maximum pressure induced deformation at the die orifice are investigated.</abstract><type>Journal Article</type><journal>The International Journal of Advanced Manufacturing Technology</journal><volume>111</volume><journalNumber>11-12</journalNumber><paginationStart>3047</paginationStart><paginationEnd>3061</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0268-3768</issnPrint><issnElectronic>1433-3015</issnElectronic><keywords>Spiral mandrel die; Coupled thermal-structural modelling; Finite element simulation; Pipe extrusion</keywords><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-12-01</publishedDate><doi>10.1007/s00170-020-06183-z</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>AERO</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-12T13:59:04.7663436</lastEdited><Created>2020-11-19T11:04:31.8124007</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Yi</firstname><surname>Nie</surname><orcid>0000-0002-1271-9595</orcid><order>1</order></author><author><firstname>Ian</firstname><surname>Cameron</surname><orcid/><order>2</order></author><author><firstname>Johann</firstname><surname>Sienz</surname><orcid>0000-0003-3136-5718</orcid><order>3</order></author><author><firstname>Yueh-Jaw</firstname><surname>Lin</surname><order>4</order></author><author><firstname>Wei</firstname><surname>Sun</surname><order>5</order></author></authors><documents><document><filename>55701__18698__5f4ecb491175423684741af2dcfb3f54.pdf</filename><originalFilename>55701.pdf</originalFilename><uploaded>2020-11-19T11:05:59.4335634</uploaded><type>Output</type><contentLength>3587945</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This article is licensed under a Creative Commons Attribution 4.0 International License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2021-01-12T13:59:04.7663436 v2 55701 2020-11-19 Coupled thermal-structural modelling and experimental validation of spiral mandrel die 7dca95e046be586bb00401b2615b9fe9 0000-0002-1271-9595 Yi Nie Yi Nie true false fcad3a814395fc2bdab4e34d09a28014 Ian Cameron Ian Cameron true false 17bf1dd287bff2cb01b53d98ceb28a31 0000-0003-3136-5718 Johann Sienz Johann Sienz true false 2020-11-19 AERO The conventional theoretical method to calculate deformations and stress states is only limited to a few cases of simple extrusion dies due to a number of assumptions and simplifications. A coupled thermal-structural modelling framework incorporating finite element method is thus developed and implemented to determine the mechanical performances of the complicated spiral mandrel die, which has a complex geometrical feature of spiral grooves and is exposed to severe conditions of thermal load and high pressure. The steady-state thermal analysis is carried out by mapping the temperature load on the flow channel from previously simulated flow characteristics of polymer melt. The structural analysis takes inputs from both thermal analysis and previously simulated pressure on polymer melt. Both the temperature and pressure loads on flow channel are transferred via the Smart Bucket Surface mapping algorithm. The mechanical properties of the spiral mandrel die are evaluated by analysing the deformation and stress distribution. The experimental validation is conducted to demonstrate the effectiveness of the numerical model. The effects of both structure parameters of the spiral mandrel and processing parameters upon the maximum stress in the die body and the maximum pressure induced deformation at the die orifice are investigated. Journal Article The International Journal of Advanced Manufacturing Technology 111 11-12 3047 3061 Springer Science and Business Media LLC 0268-3768 1433-3015 Spiral mandrel die; Coupled thermal-structural modelling; Finite element simulation; Pipe extrusion 1 12 2020 2020-12-01 10.1007/s00170-020-06183-z COLLEGE NANME Aerospace Engineering COLLEGE CODE AERO Swansea University 2021-01-12T13:59:04.7663436 2020-11-19T11:04:31.8124007 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Yi Nie 0000-0002-1271-9595 1 Ian Cameron 2 Johann Sienz 0000-0003-3136-5718 3 Yueh-Jaw Lin 4 Wei Sun 5 55701__18698__5f4ecb491175423684741af2dcfb3f54.pdf 55701.pdf 2020-11-19T11:05:59.4335634 Output 3587945 application/pdf Version of Record true This article is licensed under a Creative Commons Attribution 4.0 International License true eng http://creativecommons.org/licenses/by/4.0/
title Coupled thermal-structural modelling and experimental validation of spiral mandrel die
spellingShingle Coupled thermal-structural modelling and experimental validation of spiral mandrel die
Yi Nie
Ian Cameron
Johann Sienz
title_short Coupled thermal-structural modelling and experimental validation of spiral mandrel die
title_full Coupled thermal-structural modelling and experimental validation of spiral mandrel die
title_fullStr Coupled thermal-structural modelling and experimental validation of spiral mandrel die
title_full_unstemmed Coupled thermal-structural modelling and experimental validation of spiral mandrel die
title_sort Coupled thermal-structural modelling and experimental validation of spiral mandrel die
author_id_str_mv 7dca95e046be586bb00401b2615b9fe9
fcad3a814395fc2bdab4e34d09a28014
17bf1dd287bff2cb01b53d98ceb28a31
author_id_fullname_str_mv 7dca95e046be586bb00401b2615b9fe9_***_Yi Nie
fcad3a814395fc2bdab4e34d09a28014_***_Ian Cameron
17bf1dd287bff2cb01b53d98ceb28a31_***_Johann Sienz
author Yi Nie
Ian Cameron
Johann Sienz
author2 Yi Nie
Ian Cameron
Johann Sienz
Yueh-Jaw Lin
Wei Sun
format Journal article
container_title The International Journal of Advanced Manufacturing Technology
container_volume 111
container_issue 11-12
container_start_page 3047
publishDate 2020
institution Swansea University
issn 0268-3768
1433-3015
doi_str_mv 10.1007/s00170-020-06183-z
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description The conventional theoretical method to calculate deformations and stress states is only limited to a few cases of simple extrusion dies due to a number of assumptions and simplifications. A coupled thermal-structural modelling framework incorporating finite element method is thus developed and implemented to determine the mechanical performances of the complicated spiral mandrel die, which has a complex geometrical feature of spiral grooves and is exposed to severe conditions of thermal load and high pressure. The steady-state thermal analysis is carried out by mapping the temperature load on the flow channel from previously simulated flow characteristics of polymer melt. The structural analysis takes inputs from both thermal analysis and previously simulated pressure on polymer melt. Both the temperature and pressure loads on flow channel are transferred via the Smart Bucket Surface mapping algorithm. The mechanical properties of the spiral mandrel die are evaluated by analysing the deformation and stress distribution. The experimental validation is conducted to demonstrate the effectiveness of the numerical model. The effects of both structure parameters of the spiral mandrel and processing parameters upon the maximum stress in the die body and the maximum pressure induced deformation at the die orifice are investigated.
published_date 2020-12-01T04:10:07Z
_version_ 1763753703743946752
score 11.016235