No Cover Image

Journal article 812 views 119 downloads

Exponential convergence in entropy and Wasserstein for McKean–Vlasov SDEs

Panpan Ren, Feng-yu Wang Orcid Logo

Nonlinear Analysis, Volume: 206, Start page: 112259

Swansea University Author: Feng-yu Wang Orcid Logo

  • 20RWb.pdf

    PDF | Accepted Manuscript

    ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)

    Download (341.92KB)
Published in: Nonlinear Analysis
ISSN: 0362-546X
Published: Elsevier BV 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa56012
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2021-01-28T14:19:09Z
last_indexed 2021-01-29T04:20:51Z
id cronfa56012
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-01-28T14:20:35.8466528</datestamp><bib-version>v2</bib-version><id>56012</id><entry>2021-01-12</entry><title>Exponential convergence in entropy and Wasserstein for McKean&#x2013;Vlasov SDEs</title><swanseaauthors><author><sid>6734caa6d9a388bd3bd8eb0a1131d0de</sid><ORCID>0000-0003-0950-1672</ORCID><firstname>Feng-yu</firstname><surname>Wang</surname><name>Feng-yu Wang</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2021-01-12</date><deptcode>SMA</deptcode><abstract/><type>Journal Article</type><journal>Nonlinear Analysis</journal><volume>206</volume><journalNumber/><paginationStart>112259</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0362-546X</issnPrint><issnElectronic/><keywords>McKean&#x2013;Vlasov SDE; Exponential convergence; Stochastic Hamiltonian system; Granular media equation</keywords><publishedDay>1</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2021</publishedYear><publishedDate>2021-05-01</publishedDate><doi>10.1016/j.na.2021.112259</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-28T14:20:35.8466528</lastEdited><Created>2021-01-12T00:12:27.1858462</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Panpan</firstname><surname>Ren</surname><order>1</order></author><author><firstname>Feng-yu</firstname><surname>Wang</surname><orcid>0000-0003-0950-1672</orcid><order>2</order></author></authors><documents><document><filename>56012__19027__3f5e7768ecfa431ea67b81f3024b5c5e.pdf</filename><originalFilename>20RWb.pdf</originalFilename><uploaded>2021-01-12T00:19:43.4167626</uploaded><type>Output</type><contentLength>350130</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2022-01-22T00:00:00.0000000</embargoDate><documentNotes>&#xA9;2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND)</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by-nc-nd/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2021-01-28T14:20:35.8466528 v2 56012 2021-01-12 Exponential convergence in entropy and Wasserstein for McKean–Vlasov SDEs 6734caa6d9a388bd3bd8eb0a1131d0de 0000-0003-0950-1672 Feng-yu Wang Feng-yu Wang true false 2021-01-12 SMA Journal Article Nonlinear Analysis 206 112259 Elsevier BV 0362-546X McKean–Vlasov SDE; Exponential convergence; Stochastic Hamiltonian system; Granular media equation 1 5 2021 2021-05-01 10.1016/j.na.2021.112259 COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University 2021-01-28T14:20:35.8466528 2021-01-12T00:12:27.1858462 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Panpan Ren 1 Feng-yu Wang 0000-0003-0950-1672 2 56012__19027__3f5e7768ecfa431ea67b81f3024b5c5e.pdf 20RWb.pdf 2021-01-12T00:19:43.4167626 Output 350130 application/pdf Accepted Manuscript true 2022-01-22T00:00:00.0000000 ©2021 All rights reserved. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND) true eng https://creativecommons.org/licenses/by-nc-nd/4.0/
title Exponential convergence in entropy and Wasserstein for McKean–Vlasov SDEs
spellingShingle Exponential convergence in entropy and Wasserstein for McKean–Vlasov SDEs
Feng-yu Wang
title_short Exponential convergence in entropy and Wasserstein for McKean–Vlasov SDEs
title_full Exponential convergence in entropy and Wasserstein for McKean–Vlasov SDEs
title_fullStr Exponential convergence in entropy and Wasserstein for McKean–Vlasov SDEs
title_full_unstemmed Exponential convergence in entropy and Wasserstein for McKean–Vlasov SDEs
title_sort Exponential convergence in entropy and Wasserstein for McKean–Vlasov SDEs
author_id_str_mv 6734caa6d9a388bd3bd8eb0a1131d0de
author_id_fullname_str_mv 6734caa6d9a388bd3bd8eb0a1131d0de_***_Feng-yu Wang
author Feng-yu Wang
author2 Panpan Ren
Feng-yu Wang
format Journal article
container_title Nonlinear Analysis
container_volume 206
container_start_page 112259
publishDate 2021
institution Swansea University
issn 0362-546X
doi_str_mv 10.1016/j.na.2021.112259
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
published_date 2021-05-01T04:10:38Z
_version_ 1763753735587102720
score 11.035634