No Cover Image

Journal article 1502 views 384 downloads

Modelling ozone disinfection process for creating COVID-19 secure spaces

Hamid Tamaddon Jahromi, Sam Rolland Orcid Logo, Jason Jones Orcid Logo, Alberto Coccarelli Orcid Logo, Igor Sazonov Orcid Logo, Chris Kershaw, Chedly Tizaoui Orcid Logo, Peter Holliman Orcid Logo, David Worsley Orcid Logo, Hywel Thomas, Perumal Nithiarasu Orcid Logo

International Journal of Numerical Methods for Heat & Fluid Flow, Volume: 32, Issue: 1

Swansea University Authors: Hamid Tamaddon Jahromi, Sam Rolland Orcid Logo, Jason Jones Orcid Logo, Alberto Coccarelli Orcid Logo, Igor Sazonov Orcid Logo, Chris Kershaw, Chedly Tizaoui Orcid Logo, Peter Holliman Orcid Logo, David Worsley Orcid Logo, Hywel Thomas, Perumal Nithiarasu Orcid Logo

  • 56337.pdf

    PDF | Accepted Manuscript

    Released under the terms of a Creative Commons Attribution Non-commercial International License 4.0 (CC BY-NC 4.0)

    Download (2.3MB)

Abstract

PurposeA novel modelling approach is proposed to study ozone distribution and destruction in indoor spaces. The level of ozone gas concentration in the air, confined within an indoor space during an ozone-based disinfection process, is analysed. The purpose of this work is to investigate how ozone i...

Full description

Published in: International Journal of Numerical Methods for Heat & Fluid Flow
ISSN: 0961-5539
Published: Emerald 2021
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa56337
Abstract: PurposeA novel modelling approach is proposed to study ozone distribution and destruction in indoor spaces. The level of ozone gas concentration in the air, confined within an indoor space during an ozone-based disinfection process, is analysed. The purpose of this work is to investigate how ozone is distributed in time within an enclosed space.Design/methodology/approachA computational methodology for predicting the space- and time-dependent ozone concentration within the room across the consecutive steps of the disinfection process (generation, dwelling and destruction modes) is proposed. The emission and removal of ozone from the air volume are possible by means of a generator located in the middle of the room. This model also accounts for ozone reactions and decay kinetics, and gravity effect on the air.FindingThis work is validated against experimental measurements at different locations in the room during the disinfection cycle. The numerical results are in good agreement with the experimental data. This comparison proves that the presented methodology is able to provide accurate predictions of the time evolution of ozone concentration at different locations of the enclosed space.Originality/valueThis study introduces a novel computational methodology describing solute transport by turbulent flow for predicting the level of ozone concentration within a closed room during a COVID-19 disinfection process. A parametric study is carried out to evaluate the impact of system settings on the time variation of ozone concentration within the space considered.
Keywords: Ozone disinfection, Covid-19, Ozone decay rate, Concentration distribution, Unsteady Reynolds Average Navier Stokes, Scalar transport equation
College: Faculty of Science and Engineering
Issue: 1